Naval Architecture and Marine Engineering (NM)

Q.1 - Q.25 Carry ONE mark each.	
Q.1	There are two bags; bag1 contains 3 red, 4 black balls and bag2 contains 4 red and 3 black balls. When a fair die is rolled, if it shows a number on the die as 1 or 3 then a ball is chosen from bag1; otherwise, a ball is chosen from bag2. What is the probability of choosing a red ball if the die is rolled once?
(A)	$13 / 21$
(B)	$8 / 21$
(C)	$11 / 21$
(D)	$10 / 21$
(C)	3 and 3
(A)	3 and 2
Q.2	2 and 3

NM - Copyright © GATE 2022

Naval Architecture and Marine Engineering (NM)

(D)	3 and 1

Q.3	The solution of the differential equation $\frac{d y}{d x}+2 x y=e^{-x^{2}}$, with $y(0)=1$ (A)
(B)	$(1+\mathrm{x}) e^{x^{2}}$
(C)	$(1-x) e^{-^{x^{2}}}$
(D)	$(1-x) e^{x^{2}}$
Q.4	Evaluate $\int_{0}^{3} e^{x} d x$ (by Simpson's 3/8th rule if $\left.\mathrm{h}=1\right)$
(B)	21.05
(C)	19.28
(D)	19.72

NM - Copyright © GATE 2022

Naval Architecture and Marine Engineering (NM)

Q.5	Which of the following pairs are correctly matched? a) Resilience - Resistance to deformation b) Malleability - Shape change c) Creep - Progressive deformation d) Plasticity - Permanent deformation Select the correct answer using the codes given below
(A)	b, c and d
(B)	a, b and c
(C)	a, b and d
(D)	a, c and d
(A)	Proportional to L and inversely proportional to D^{2}

NM - Copyright © GATE 2022

Naval Architecture and Marine Engineering (NM)

(C)	Proportional to L but inversely proportional to D
(D)	Proportional to U but independent D
Q.7	
(A)	Compression only
(B)	Tension
(B)	Mhen a nut is tightened by placing a washer below it, the bolt will be subjected
(C)	Shear only
(D)	Compression and shear
	Bernoulli's equation represents

NM - Copyright © GATE 2022

Naval Architecture and Marine Engineering (NM)

(C)	Mass balance
(D)	Total energy balance
Q.9	
(A)	Resultant pressure of the liquid in case of an immersed body acts through which
one of the following?	
(B)	Centre of pressure
(C)	Metacentre
(D)	Centre of buoyancy
(B)	Steady flows only incompressible flow
(A)	Any flow
(D)	
	The differential form of the mass balance equation, gradient of V = 0 is valid for

NM - Copyright © GATE 2022

Naval Architecture and Marine Engineering (NM)

(D)	Only incompressible flows that are steady
Q.11	
(A)	The thickness of laminar boundary layer at a distance ' X ' from the leading edge
(B)	$\mathrm{X}^{1 / 2}$
(C)	$X^{1 / 5}$
(D)	$X^{4 / 5}$
(C)	Maintain the same level of draft varies as
(B)	Sink a little
Q.12	When a ship moving on seawater enters a river, it is expected to

Naval Architecture and Marine Engineering (NM)

(D)	Rise or fall depending on whether it is made of wood or steel
Q.13	A large metacentric height in a vessel
(A)	Improves stability and makes periodic time to oscillation longer
(B)	Impairs stability and makes periodic time of oscillation shorter
(C)	Has no effect on stability or the periodic time of oscillation
(D)	Improves stability and makes periodic time to oscillation shorter
(D)	3.60
(C)	5.76
(A)	7.20
	6.48
	A 1.0 m long model of a ship is towed at a speed of $81 \mathrm{~cm} / \mathrm{s}$ in a towing tank. To
what speed of the ship, 64 m long, does this correspond to	
(m ?	

Naval Architecture and Marine Engineering (NM)

Q.15	At high frequency, the ship motion is dominated by _____ forces.
(A)	Froude-Krylov
(B)	Restoring
(C)	Diffraction
(D)	Inertia
Q.16	Super long stroke marine diesel engines are working on___
(A)	Two stroke diesel cycle
(B)	Four stroke diesel cycle
(A)	remains constant
(D)	Combined cycle
Qual cycle	
	In an Impulse steam turbine, the relative fluid velocity

Naval Architecture and Marine Engineering (NM)

(B)	is zero
(C)	increases
(D)	decreases
(A)	radial or axial
(B)	radial
(C)	axial the turbine wheel.
(D)	tangential
(C)	ballast pump
(B)	fire pump
(A)	main sea water pump
	Engine room emergency bilge suction is connected to

Naval Architecture and Marine Engineering (NM)

Naval Architecture and Marine Engineering (NM)

Q.23	The metacentric height for a floating spherical ball of radius R and depth of immersion also equal to R is?
Q.24	A Ship has the following Characteristics: Length $=20 \mathrm{~m}$; Breadth $=5 \mathrm{~m}$; Average draught $=2 \mathrm{~m}$; Block Coefficient $=0.4$; Transverse Metacentric Height $=0.5 \mathrm{~m}$; Structural radius of Gyration in roll= 2 m. In roll, the damping is 8% of the critical damping. In roll, the added inertia is 20% of the inertia if the ship were in the air. Calculate the roll natural period of the ship in seconds?
	Q.25 A frictionless piston cylinder device contains a gas initially at 0.8 MPa and 0.015 $\mathrm{~m}^{3}$. It expands quasi- statically at a constant temperature to a final volume of $0.030 \mathrm{~m} \mathrm{~m}^{3}$. The work output during this process will be

Naval Architecture and Marine Engineering (NM)

Q. 26 - Q. 55 Carry TWO marks each.

Q. 26	The solution of the differential equation $\frac{d y}{d x}+2 y=0$, for the boundary condition $y=5$ and $x=1$
(A)	$y=e^{-2 x}$
(B)	$y=2 e^{-2 x}$
(C)	$y=10.95 e^{-2 x}$
(D)	$y=36.95 e^{-2 x}$
Q. 27	The Extremum (minimum or maximum) point of a function $f(x)=x^{3}-6 x$ is to be determined by using the Newton - Raphson method with an initial guess of $\mathrm{x}_{0}=1$, the value of x after two iterations (x 2) is
(A)	0.0141
(B)	1.4142
(C)	1.4167

Naval Architecture and Marine Engineering (NM)

(D)	1.5000
Q.28	A concentrated load of P acts on a simply supported beam of span L at a distance L/3 from the left support. The bending moment at the point of application of the load is given by
(A)	PL/3
(B)	2 2PL/3
(C)	PL/9
(D)	2 2PL/9
(B)	Half of A
The same as that of A	
	The diameter of shaft A is twice the diameter of shaft B, and both are made of the same material. Assuming both the shafts rotate at the same speed, the maximum power transmitted by B is:

Naval Architecture and Marine Engineering (NM)

(C)	$1 / 8^{\text {th }}$ of A
(D)	$1 / 4^{\text {th }}$ of A
Q.30	The realisation of velocity potential in fluid flow indicates that the
(A)	Flow must be irrotational
(B)	Circulation around any closed curve must have a finite value
(C)	Flow is rotational and satisfies the continuity equation
(D)	Vorticity must be non - zero
(B)	The flow is rotational
(A)	The flow does not satisfy the continuity equation
Q.31	The velocity components for a two-dimensional incompressible flow of a fluid are $u=x$
	$4 y$ and $v=-y-4 x$. it can be concluded that

Naval Architecture and Marine Engineering (NM)

(C)	The flow is irrotational
(D)	None of the given answers
Q. 32	A propeller shaft made of composite material, steel, and aluminum, is shown in the figure below. Determine the torsional spring constant of the shaft in Nm.rad. $\left(G_{\text {steel }}=80 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}, \mathrm{G}_{\text {Aluminum }}=26 \times 10^{9} \mathrm{~N} / \mathrm{m}^{2}\right)$
(A)	5.5×10^{8}
(B)	4.5×10^{7}
(C)	5.5×10^{6}
(D)	6.5×10^{4}

NM - Copyright © GATE 2022

Naval Architecture and Marine Engineering (NM)

Q. 33	An ellipsoid accelerating underwater (completely submerged) will not have which one of the following coupled added mass $\left(\mathrm{A}_{\mathrm{ij}}\right)$. A_{ij} shows the added mass in $\mathrm{i}^{\text {th }}$ direction due to motion in $\mathrm{j}^{\text {th }}$ direction. 1-2-3 corresponds to $x-y-z$ axis, and 4-5-6 corresponds to rotation about $x-y$ and z-axis, respectively.
(A)	A33; A55
(B)	A26; A66
(C)	A55; A66
(D)	A35; A26

Naval Architecture and Marine Engineering (NM)

Q.34	A man on board of a ship observes that the waves are coming from stern of the ship with zero heading angle. The ship is moving with a velocity of $9.81 \mathrm{~m} / \mathrm{s}$. He counts the wave crest for every 31.42 sec. What are the possible wave frequency?
(A)	$0.2,0.6$ and 1.2
(B)	$0.3,0.9$ and 1.6
(C)	$0.3,0.7$ and 1.2
(D)	$0.5,0.9$ and 1.6
Q.35	A closed system undergoes a process 1-2 for which the values of Q1-2 and W1- 2 are +20 kJ and +50 kJ, respectively. If the system is returned to state, 1, and Q2-1 is -10 kJ, what is the value of the work W2-1 in (D) (B)
-40	
+20	
	-80

NM - Copyright © GATE 2022

Naval Architecture and Marine Engineering (NM)

Q.36	At the inlet of the adiabatic steam turbine, $\mathrm{h} 1,3200 \mathrm{~kJ} / \mathrm{kg}, \mathrm{V} 1,160 \mathrm{~m} / \mathrm{s}, \mathrm{Z} 1,10$ $\mathrm{~m}, \mathrm{P} 1,3 \mathrm{MPa}$ and at the outlet $\mathrm{h} 2=2600 \mathrm{~kJ} / \mathrm{kg}, \mathrm{V} 2=100 \mathrm{~m} / \mathrm{s}, \mathrm{Z} 2=6 \mathrm{~m}, \mathrm{P} 2=$ 70 kPa If mass flow rate of steam through the turbine is $20 \mathrm{~kg} / \mathrm{s}$ the power output of the turbine (in MW) is:
(A)	12.157
(B)	12.941
(C)	168.001
(D)	168.785
(D)	Does not depend on source and sink temperatures
(B)	Decreasing the sink temperature while keeping the source temperature constant
(C)	Decreasing the source temperature while keeping the sink temperature constant
Increasing the sink temperature while keeping the source temperature constant	
	Efficiency of a Carnot engine can be increased by

NM - Copyright © GATE 2022

Naval Architecture and Marine Engineering (NM)

Q. 38	If the air is maintained at $30^{\circ} \mathrm{C}$ and the temperature of a body cools from $80^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$ in 12 minutes, what is the temperature of the body after 24 minutes?			
Q.39	The Laplace transform of the function $\mathrm{f}(\mathrm{t})=\cos ^{2} 2 \mathrm{t} \mathrm{is?}$	$	$	Q.40
:---				
One-half length of 50 mm diameter steel rod is solid while the remaining half is				
hallow having a bore of 25 mm. The rod is subjected to equal and opposite torque				
at its ends. If the maximum shear stress in the solid portion is τ or, the maximum				
shear stress in the hollow portion is $\quad \tau$.				

Naval Architecture and Marine Engineering (NM)

Q.42	A simply supported beam of span length 6 m and 75 mm diameter carries a uniformly distributed load of $1.5 \mathrm{kN} / \mathrm{m}$. The maximum value of bending moment will be__ $\mathrm{kNm} ?$

Q. 43	A horizontal beam under bending has maximum bending stress of 100 MPa and maximum shear stress of 20 MPa . What is the maximum principal stress in the beam?
Q. 44	A stream function is given by $\Psi=2 x^{2} y+(x+1) y^{2}$. The flow rate across a line joining points $A(3,0)$ and $B(0,2)$ is \qquad Units.
Q. 45	An open tank contains water to a depth of 2 m and oil over it to a depth of 1 m . if the specific gravity of oil is 0.8 , then the pressure intensity at the interface of the two fluid layers will be \qquad $\mathrm{N} / \mathrm{m}^{2}$.
Q. 46	Pressures have been observed at four different points in different units of measurement as follows a) 150 KPa

NM - Copyright © GATE 2022

Naval Architecture and Marine Engineering (NM)

	b) 1800 millibar c) 20 m of water d) 1240 mm of mercury Then the points arranged in descending order of pressure are?
Q. 47	Air (kinematic viscosity $=15 \times 10^{-6} \mathrm{~m}^{2} / \mathrm{s}$) with a free stream velocity of $10 \mathrm{~m} / \mathrm{s}$ flows over a smooth two-dimensional flat plate. If the critical Reynolds number is 5×10^{5}, what is the maximum distance (in cm) from the leading edge up to which laminar boundary layer exists?
Q. 48	Ship response is denoted by the equation $\eta(t)=\eta^{A} \cos (\omega t-\phi)$. Where η^{A} is the magnitude of response amplitude, and ϕ is the phase angle relative to the excitation force. A model sails in regular waves with a heave motion of 0.2 m amplitude and 45 deg delay relative to the excitation force. The pitch motion has a 6 deg amplitude and 120 deg delay relative to the excitation moment. The surge motion is 0.2 m amplitude with a 30 deg delay relative to the excitation force. The model is moored in head waves (180 deg heading) of 4 m wavelength. What will be the absolute value of the vertical acceleration in $\mathrm{m} / \mathrm{s}^{2}$ at a point located at 2 m forward of the centre of gravity at time $\mathrm{t}=0 \mathrm{sec}$? (Follow a right handed coordinate system with $x-y-z$ axis pointing toward bow, port, and up and clockwise rotation about these axes are positive).

NM - Copyright © GATE 2022

Naval Architecture and Marine Engineering (NM)

NM - Copyright © GATE 2022

Naval Architecture and Marine Engineering (NM)

	assuming that KM remains constant, calculate the angle to which the vessel will loll in degrees (round off to the nearest integer).

Q. 52	In an experimental set-up, air flows between two stations P and Q, adiabatically. The direction of flow depends on the pressure and temperature conditions maintained at P and Q . The conditions at station P are 150 kPa and 350 K . The temperature at station Q is 300 K . The following are the properties and relations performing to air: Specific heat at constant pressure, $\mathrm{c}_{\mathrm{p}}=1.005 \mathrm{~kJ} / \mathrm{kgK}$, Specific heat at constant volume, $\mathrm{c}_{\mathrm{v}}=0.718 \mathrm{~kJ} / \mathrm{kgK}$, Characteristic gas constant, $\mathrm{R}=0.287 \mathrm{~kJ} / \mathrm{kgK}$, Enthalpy, $\mathrm{h}=\mathrm{c}_{\mathrm{p}} \mathrm{T}$, Internal Energy, $u=c_{v} T$, If the pressure at station Q is 50 kPa , the change in entropy $(\mathrm{s} \mathrm{Q}-\mathrm{sP})$ is \qquad $\mathrm{kJ} / \mathrm{kg}$.
Q. 53	Two compartments of an insulated vessel, each of $3 \mathrm{~m}^{3}$, contain air at 0.7 MPa , $95{ }^{\circ} \mathrm{C}$ and $0.35 \mathrm{MPa}, 205{ }^{\circ} \mathrm{C}$. If the wall between the two compartments is

Naval Architecture and Marine Engineering (NM)

	removed and the air is mixed adiabatically, the change in entropy will be J/K.
Q. 54	A series combination of two Cornot's engines operates between the temperatures of $180^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C} . ~ I f ~ t h e ~ e n g i n e s ~ p r o d u c e ~ a n ~ e q u a l ~ a m o u n t ~ o f ~ w o r k, ~ t h e n ~ t h e ~$ intermediate temperature is _- ${ }^{\circ} \mathrm{C}$?
Q. 55	Assume the above turbine to be a part of the simple Rankine cycle. The density of the water at the inlet to the pump is $1000 \mathrm{~kg} / \mathrm{m}^{3}$. Ignoring the kinetic energy and potential energy effects, the specific work supplied to the pump is $\mathrm{kJ} / \mathrm{kg}$.

END OF THE QUESTION PAPER

