

General Aptitude (GA)

Q.1 – Q.5 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: – 1/3).

Q.1	The current population of a city is 11,02,500. If it has been increasing at the rate of 5% per annum, what was its population 2 years ago?
(A)	9,92,500
(B)	9,95,006
(C)	10,00,000
(D)	12,51,506

Q.2	<i>p</i> and <i>q</i> are positive integers and $\frac{p}{q} + \frac{q}{p} = 3$,	
	then, $\frac{p^2}{q^2} + \frac{q^2}{p^2} =$	
(A)	3	16 1
(B)	7	S. mal
(C)	9	- N
(D)	11	2

	The least number of squares that must be added so that the line P-Q becomes the line of symmetry is
(A)	4
-	4 3
(A) (B) (C)	

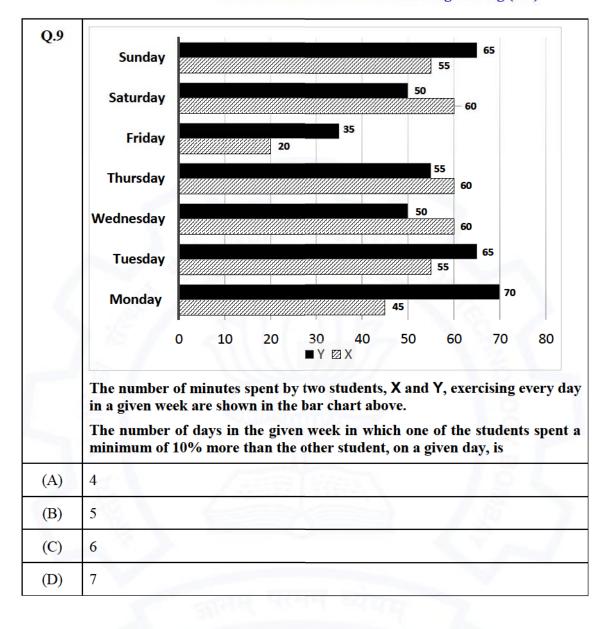
Q.4	<i>Nostalgia</i> is to <i>anticipation</i> as is to Which one of the following options maintains a similar logical relation in the above sentence?
(A)	Present, past
(B)	Future, past
(C)	Past, future
(D)	Future, present

1	Sec. 2	-	
		Contaction of the local division of the	TRA
		Contract of the same of the local distance o	10.1
	and the second	A REAL PROPERTY AND INCOME.	
			-

Q.5	Consider the following sentences: (i) I woke up from sleep. (ii) I woked up from sleep. (iii) I was woken up from sleep. (iv) I was wokened up from sleep. Which of the above sentences are grammatically CORRECT?
(A)	(i) and (ii)
(B)	(i) and (iii)
(C)	(ii) and (iii)
(D)	(i) and (iv)

Q. 6 – Q. 10 Multiple Choice Question (MCQ), carry TWO marks each (for each wrong answer: -2/3).

Q.6	 Given below are two statements and two conclusions. Statement 1: All purple are green. Statement 2: All black are green. Conclusion I: Some black are purple. Conclusion II: No black is purple. Based on the above statements and conclusions, which one of the following options is logically CORRECT?
(A)	Only conclusion I is correct.
(B)	Only conclusion II is correct.
(C)	Either conclusion I or II is correct.
(D)	Both conclusion I and II are correct.


т

Г

Q.7	Computers are ubiquitous. They are used to improve efficiency in almost all fields from agriculture to space exploration. Artificial intelligence (AI) is currently a hot topic. AI enables computers to learn, given enough training data. For humans, sitting in front of a computer for long hours can lead to health issues. Which of the following can be deduced from the above passage?
	 (i) Nowadays, computers are present in almost all places. (ii) Computers cannot be used for solving problems in engineering. (iii) For humans, there are both positive and negative effects of using computers. (iv) Artificial intelligence can be done without data.
(A)	(ii) and (iii)
(B)	(ii) and (iv)
(C)	(i), (iii) and (iv)
(D)	(i) and (iii)

Q.8	Consider a square sheet of side 1 unit. In the first step, it is cut along the main diagonal to get two triangles. In the next step, one of the cut triangles is revolved about its short edge to form a solid cone. The volume of the resulting cone, in cubic units, is
(A)	$\frac{\pi}{3}$
(B)	$\frac{2\pi}{3}$
(C)	$\frac{3\pi}{2}$
(D)	3π

Q.10	Corners are cut from an equilateral triangle to produce a regular convex hexagon as shown in the figure above. The ratio of the area of the regular convex hexagon to the area of the original equilateral triangle is
(A)	2:3
(B)	3:4
(C)	4:5
(D)	5:6

Electronics and Communication Engineering (EC)

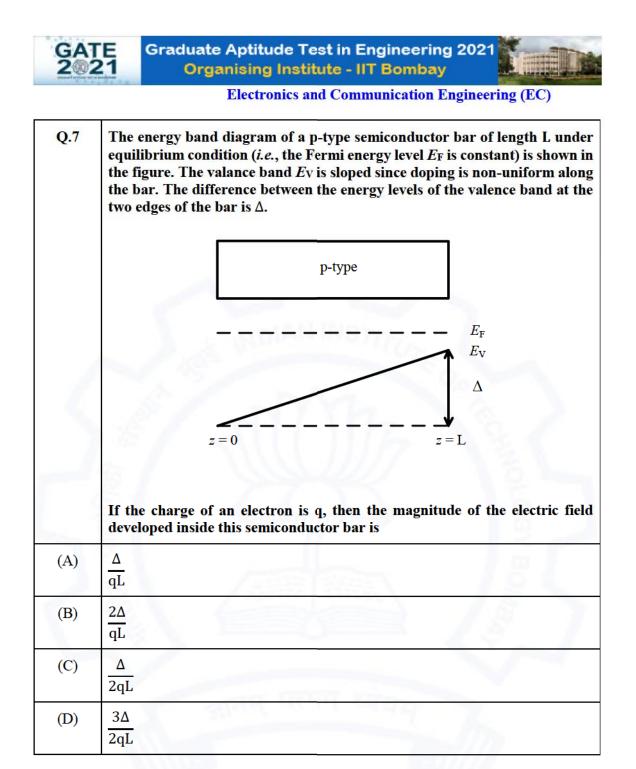
Q.1 – Q.15 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: – 1/3).

Q.1	The vector function $F(\mathbf{r}) = -x \hat{\imath} + y \hat{j}$ is defined over a circular arc C shown in the figure.
(A)	$\frac{1}{2}$
(B)	$\frac{1}{4}$
(C)	$\frac{1}{6}$
(D)	$\frac{1}{3}$

Q.2	Consider the differential equation given below. $\frac{dy}{dx} + \frac{x}{1-x^2}y = x\sqrt{y}$ The integrating factor of the differential equation is
(A)	$(1-x^2)^{-3/4}$
(B)	$(1-x^2)^{-1/4}$
(C)	$(1-x^2)^{-3/2}$
(D)	$(1-x^2)^{-1/2}$

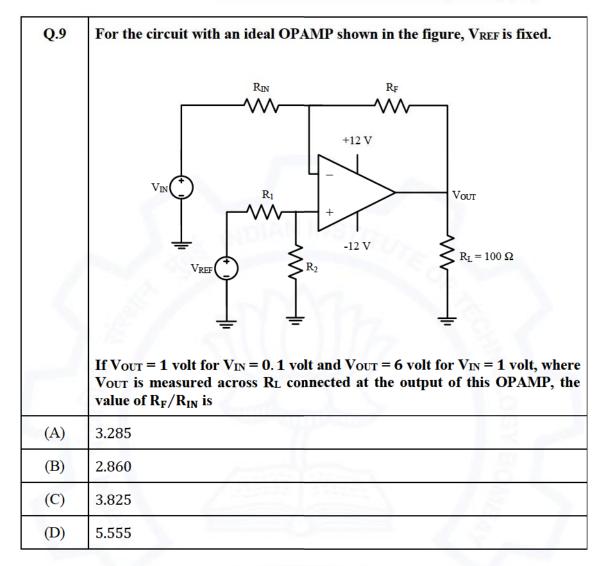
Q.3	Two continuous random variables X and Y are related as Y = 2X + 3
	Let σ_X^2 and σ_Y^2 denote the variances of X and Y, respectively. The variances are related as
(A)	$\sigma_Y^2 = 2 \sigma_X^2$
(B)	$\sigma_Y^2 = 4 \sigma_X^2$
(C)	$\sigma_Y^2 = 5 \sigma_X^2$
(D)	$\sigma_{\rm Y}^2 = 25 \sigma_{\rm X}^2$

Q.4	Consider a real-valued base-band signal $x(t)$, band limited to 10 kHz. The Nyquist rate for the signal $y(t) = x(t) x \left(1 + \frac{t}{2}\right)$ is
(A)	15 kHz
(B)	30 kHz
(C)	60 kHz
(D)	20 kHz



Q.5	Consider two 16-point sequences $x[n]$ and $h[n]$. Let the linear convolution of $x[n]$ and $h[n]$ be denoted by $y[n]$, while $z[n]$ denotes the 16-point inverse discrete Fourier transform (IDFT) of the product of the 16-point DFTs of x[n] and $h[n]$. The value(s) of k for which $z[k] = y[k]$ is/are
(A)	k = 0, 1, 2,, 15
(B)	k = 0
(C)	k = 15
(D)	k = 0 and $k = 15$

Q.6	A bar of silicon is doped with boron concentration of 10^{16} cm ⁻³ and assumed to be fully ionized. It is exposed to light such that electron-hole pairs are generated throughout the volume of the bar at the rate of 10^{20} cm ⁻³ s ⁻¹ . If the recombination lifetime is 100 µs, intrinsic carrier concentration of silicon is 10^{10} cm ⁻³ and assuming 100% ionization of boron, then the approximate product of steady-state electron and hole concentrations due to this light exposure is
(A)	$10^{20} \mathrm{cm}^{-6}$
(B)	$2 \times 10^{20} \text{ cm}^{-6}$
(C)	$10^{32} \mathrm{cm}^{-6}$
(D)	$2 \times 10^{32} \text{ cm}^{-6}$


TE

Q.8 In the circuit shown in the figure, the transistors M_1 and M_2 are operating in saturation. The channel length modulation coefficients of both the transistors are non-zero. The transconductance of the MOSFETs M1 and M2 are g_{m1} and g_{m2} , respectively, and the internal resistance of the MOSFETs M_1 and M_2 are r_{01} and r_{02} , respectively. $V_{\rm DD}$ V_{in} M_2 Vout M_1 Ignoring the body effect, the ac small signal voltage gain $(\partial V_{out}/\partial V_{in})$ of the circuit is (A) $-g_{m2}(r_{01}||r_{02})$ $-g_{m2}\left(\frac{1}{g_{m1}}||r_{02}\right)$ (B) $-g_{m1}\left(rac{1}{g_{m2}}||r_{01}||r_{02}\right)$ (C) $-g_{m2}\left(\frac{1}{g_{m1}}||r_{01}||r_{02}\right)$ (D)

Q.10	Consider the circuit with an ideal OPAMP shown in the figure.
	$\begin{array}{c} R \\ V_{IN} \\ V_{IN} \\ W_{IN} \\ W_{REF} \\ W_{REF} \\ W_{CC} \\$
(A)	$V_{IN} = V_{REF}$
(B)	$V_{IN} = 0.5 V_{REF}$
(C)	$V_{IN} = 2 V_{REF}$
(D)	$V_{IN} = 2 + V_{REF}$

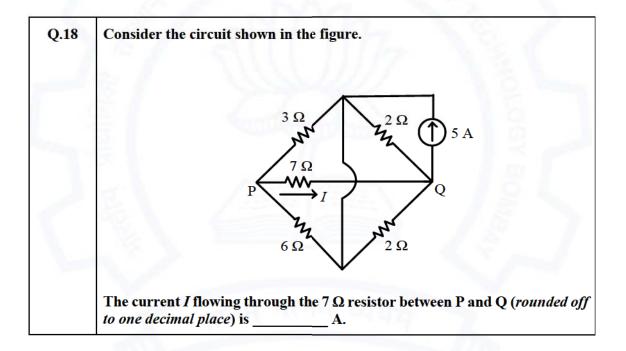
Q.11	If $(1235)_x = (3033)_y$, where x and y indicate the bases of the corresponding numbers, then
(A)	x = 7 and $y = 5$
(B)	x = 8 and $y = 6$
(C)	x = 6 and $y = 4$
(D)	x = 9 and $y = 7$

Q.12	Addressing of a 32K \times 16 memory is realized using a single decoder. The minimum number of AND gates required for the decoder is
(A)	28
(B)	2 ³²
(C)	2 ¹⁵
(D)	219

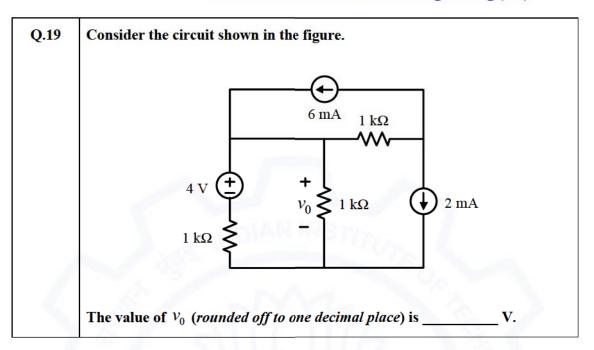
Electronics and Communication Engineering (EC)

Q.14	The complete Nyquist plot of the open-loop transfer function $G(s)H(s)$ of a feedback control system is shown in the figure.
	j Im GH G(s)H(s)-plane G(s)H(s)-plane G(s)H(s)-plane G(s)H(s)-plane G(s)H(s)-plane G(s)H(s)-plane G(s)H(s)-plane G(s)H(s)-plane G(s)H(s)-plane G(s)H(s)-plane G(s)H(s)-plane G(s)H(s)-plane G(s)H(s)-plane G(s)H(s)-plane G(s)H(s)-plane G(s)H(s)-plane G(s)H(s)-plane G(s)H(s)-plane G
(A)	0
(B)	1
(C)	4
(D)	3

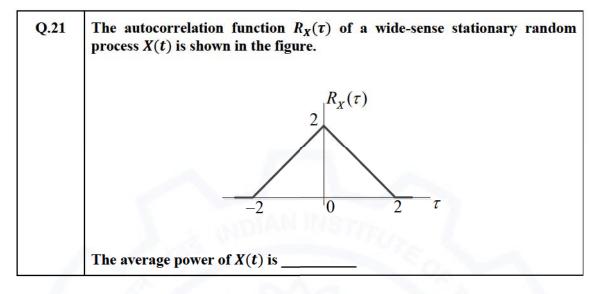
Q.15	Consider a rectangular coordinate system (x, y, z) with unit vectors a_x , a_y , and a_z . A plane wave traveling in the region $z \ge 0$ with electric field vector $E = 10 \cos(2 \times 10^8 t + \beta z) a_y$ is incident normally on the plane at $z = 0$, where β is the phase constant. The region $z \ge 0$ is in free space and the region $z < 0$ is filled with a lossless medium (permittivity $\varepsilon = \varepsilon_0$, permeability $\mu = 4\mu_0$, where $\varepsilon_0 = 8.85 \times 10^{-12}$ F/m and $\mu_0 = 4\pi \times 10^{-7}$ H/m). The value of the reflection coefficient is
(A)	$\frac{1}{3}$
(B)	$\frac{3}{5}$
(C)	$\frac{2}{5}$
(D)	$\frac{2}{3}$



Q.16 – Q.25 Numerical Answer Type (NAT), carry ONE mark each (no negative marks).


Q.16	If the vectors $(1.0, -1.0, 2.0)$, $(7.0, 3.0, x)$ and $(2.0, 3.0, 1.0)$ in \mathbb{R}^3
	are linearly dependent, the value of x is

Q.17	Consider the vector field $\mathbf{F} = \mathbf{a}_x(4y - c_1z) + \mathbf{a}_y(4x + 2z) + \mathbf{a}_z(2y + z)$ in
2000	a rectangular coordinate system (x, y, z) with unit vectors a_x , a_y , and a_z . If the
	field F is irrotational (conservative), then the constant c_1 (in integer) is


AΤΕ

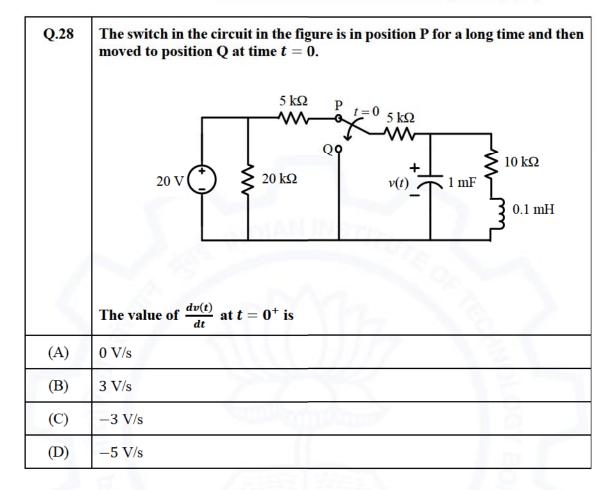
Q.20	An 8-bit unipolar (all analog output values are positive) digital-to-analog converter (DAC) has a full-scale voltage range from 0 V to 7.68 V. If the digital input code is 10010110 (the leftmost bit is MSB), then the analog output voltage of the DAC (rounded off to one decimal place) is
	V.

Q.22	Consider a carrier signal which is amplitude modulated by a single-tone
	sinusoidal message signal with a modulation index of 50%. If the carrier and
	one of the sidebands are suppressed in the modulated signal, the percentage
	of power saved (rounded off to one decimal place) is

Q.23	A speech signal, band limited to 4 kHz, is sampled at 1.25 times the Nyquist
	rate. The speech samples, assumed to be statistically independent and
	uniformly distributed in the range -5 V to $+5$ V, are subsequently
	quantized in an 8-bit uniform quantizer and then transmitted over a voice-
	grade AWGN telephone channel. If the ratio of transmitted signal power to
	channel noise power is 26 dB, the minimum channel bandwidth required to
	ensure reliable transmission of the signal with arbitrarily small probability
	of transmission error (rounded off to two decimal places) is kHz.

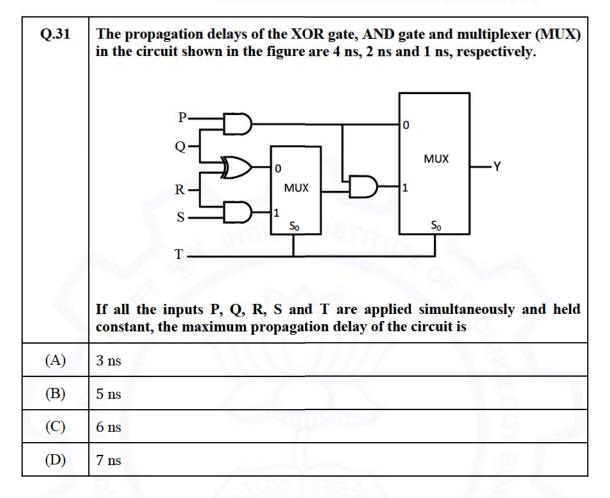
Q.24	A 4 kHz sinusoidal message signal having amplitude 4 V is fed to a delta
	modulator (DM) operating at a sampling rate of 32 kHz. The minimum step
	size required to avoid slope overload noise in the DM (rounded off to two
	decimal places) isV.

Q.25	The refractive indices of the core and cladding of an optical fiber are 1.50 and 1.48, respectively. The critical propagation angle, which is defined as the maximum angle that the light beam makes with the axis of the optical fiber to achieve the total internal reflection. (rounded off to two decimal
	fiber to achieve the total internal reflection, (rounded off to two decimal places) is degree.


Q. 26 – Q. 35 Multiple Choice Question (MCQ), carry TWO marks each (for each wrong answer: -2/3).

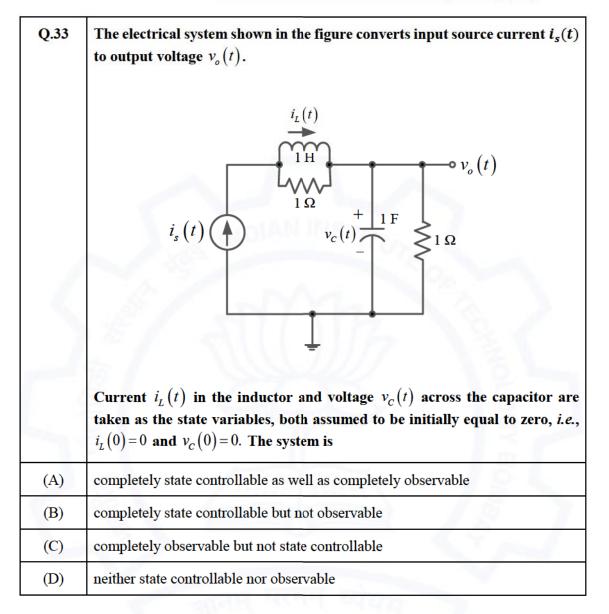
Q.26	Consider the integral
	$\oint_C \frac{\sin(x)}{x^2(x^2+4)} dx$ where C is a counter-clockwise oriented circle defined as $ x-i = 2$. The value of the integral is
(A)	$-\frac{\pi}{8}\sin(2i)$
(B)	$\frac{\pi}{8}\sin(2i)$
(C)	$-\frac{\pi}{4}\sin(2i)$
(D)	$\frac{\pi}{4}\sin(2i)$

Q.27	A box contains the following three coins.
	 I. A fair coin with head on one face and tail on the other face. II. A coin with heads on both the faces. III. A coin with tails on both the faces.
	A coin is picked randomly from the box and tossed. Out of the two remaining coins in the box, one coin is then picked randomly and tossed. If the first toss results in a head, the probability of getting a head in the second toss is
(A)	$\frac{2}{5}$
(B)	$\frac{1}{3}$
(C)	$\frac{1}{2}$
(D)	$\frac{2}{3}$

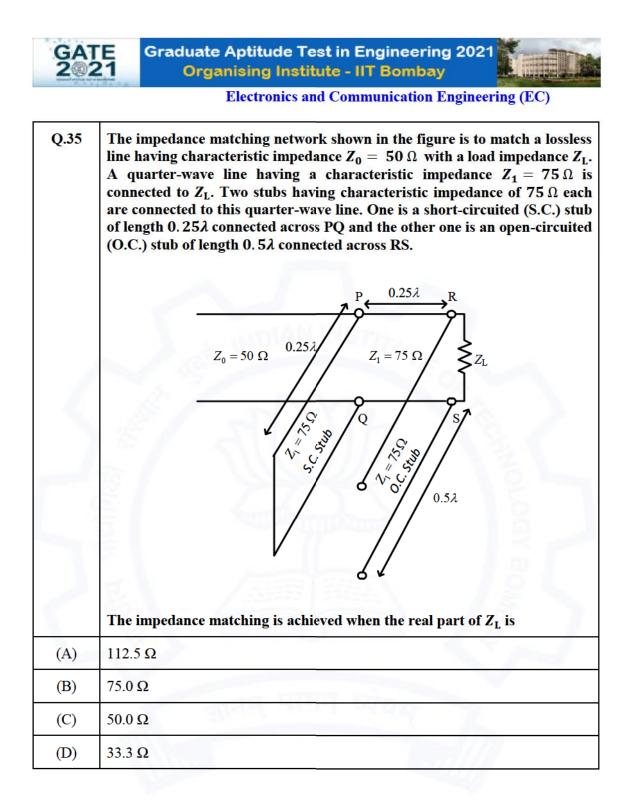


Q.29	Consider the two-port network shown in the figure.
	$V_{1} 1 \Omega \underbrace{\downarrow}_{1 \Omega} \\ \downarrow 0 \\ \downarrow 0 \\ \downarrow 0 \\ \downarrow 0 \\ \downarrow 1 \Omega \underbrace{\downarrow}_{1 \Omega} \\ \downarrow 0 \\ \downarrow $
	-O
(A)	$y_{11} = 2, y_{12} = -4, y_{21} = -4, y_{22} = 2$
(B)	$y_{11} = 1, y_{12} = -2, y_{21} = -1, y_{22} = 3$
(C)	$y_{11} = 2, y_{12} = -4, y_{21} = -1, y_{22} = 2$
(D)	$y_{11} = 2, y_{12} = -4, y_{21} = -4, y_{22} = 3$

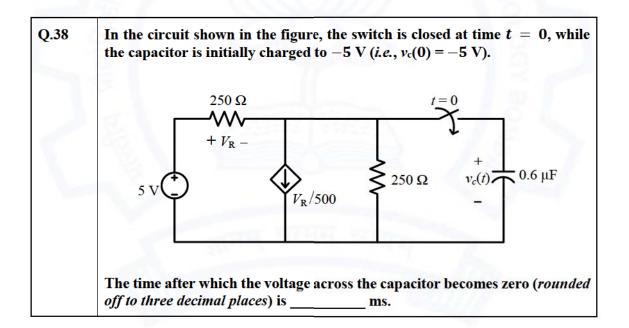
Q.30	For an n-channel silicon MOSFET with 10 nm gate oxide thickness, the substrate sensitivity $(\partial V_T / \partial V_{BS})$ is found to be 50 mV/V at a substrate voltage $ V_{BS} = 2 V$, where V_T is the threshold voltage of the MOSFET. Assume that, $ V_{BS} \gg 2\Phi_B$, where $q\Phi_B$ is the separation between the Fermi energy level E_F and the intrinsic level E_i in the bulk. Parameters given are Electron charge (q) = 1.6×10^{-19} C Vacuum permittivity (ε_0) = 8.85×10^{-12} F/m Relative permittivity of silicon (ε_{Si}) = 12 Relative permittivity of oxide (ε_{ox}) = 4 The doping concentration of the substrate is
(A)	$7.37 \times 10^{15} \text{ cm}^{-3}$
(B)	$4.37 \times 10^{15} \text{ cm}^{-3}$
(C)	$2.37 \times 10^{15} \text{ cm}^{-3}$
(D)	$9.37 \times 10^{15} \text{ cm}^{-3}$



Q.32	The content of the registers are R ₁ = 25H, R ₂ = 30H and R ₃ = 40H. The following machine instructions are executed. PUSH{R1} PUSH{R2} PUSH{R3} POP{R1} POP{R2} POP{R3} After execution, the content of registers R1, R2, R3 are
(A)	$R_1 = 40H, R_2 = 30H, R_3 = 25H$
(B)	$R_1 = 25H, R_2 = 30H, R_3 = 40H$
(C)	$R_1 = 30H, \ R_2 = 40H, \ R_3 = 25H$
(D)	$R_1 = 40H, R_2 = 25H, R_3 = 30H$



Q.34	A digital transmission system uses a $(7, 4)$ systematic linear Hamming code for transmitting data over a noisy channel. If three of the message-codeword pairs in this code $(m_i; c_i)$, where c_i is the codeword corresponding to the i^{th} message m_i , are known to be $(1100; 0101100)$, (1110; 0011110) and $(0110; 1000110)$, then which of the following is a valid codeword in this code?
(A)	1101001
(B)	1011010
(C)	0001011
(D)	0110100



Q.36 – Q.55 Numerical Answer Type (NAT), carry TWO mark each (no negative marks).

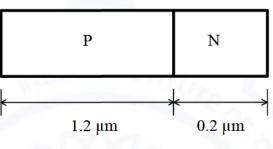
Q.36	A real 2×2 non-singular matrix A with repeated eigenvalue is given as
	$\mathbf{A} = \begin{bmatrix} \mathbf{x} & -3 \cdot 0 \\ 3 \cdot 0 & 4 \cdot 0 \end{bmatrix}$
	$\begin{bmatrix} 3.0 & 4.0 \end{bmatrix}$
	where x is a real positive number. The value of x (rounded off to one decimal place) is

Q.37	For a vector field D = $\rho \cos^2 \varphi a_{\rho} + z^2 \sin^2 \varphi a_{\varphi}$ in a cylindrical coordinate
	system (ρ, φ, z) with unit vectors a_{ρ} , a_{φ} and a_{z} , the net flux of D leaving the
	closed surface of the cylinder ($ ho=3, 0\leq z\leq 2$) (rounded off to two decimal
	places) is

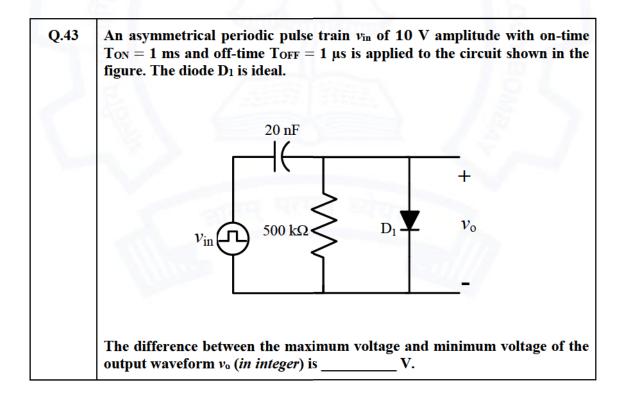
Q.39 The exponential Fourier series representation of a continuous-time periodic signal x(t) is defined as $x(t) = \sum_{k=-\infty}^{\infty} a_k e^{jk\omega_0 t}$ where ω_0 is the fundamental angular frequency of x(t) and the coefficients of the series are a_k . The following information is given about x(t) and a_k . I. x(t) is real and even, having a fundamental period of 6 II. The average value of x(t) is 2 III. $a_k = \begin{cases} k, & 1 \le k \le 3\\ 0, & k > 3 \end{cases}$ The average power of the signal x(t) (rounded off to one decimal place) is ______

Q.40	For a unit step input $u[n]$, a discrete-time LTI system produces an output
	signal $(2\delta[n+1] + \delta[n] + \delta[n-1])$. Let $y[n]$ be the output of the system
	for an input $\left(\left(\frac{1}{2}\right)^n u[n]\right)$. The value of $y[0]$ is

Q.41	Consider the signals $x[n] = 2^{n-1} u[-n+2]$ and $y[n] = 2^{-n+2} u[n+1]$, where $u[n]$ is the unit step sequence. Let $X(e^{j\omega})$ and $Y(e^{j\omega})$ be the discrete- time Fourier transform of $x[n]$ and $y[n]$, respectively. The value of the integral
	27

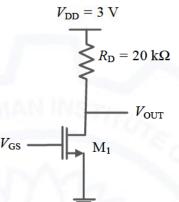

$$\frac{1}{2\pi}\int_{0}^{\infty}X(e^{j\omega})\ Y(e^{-j\omega})\ d\omega$$

(rounded off to one decimal place) is

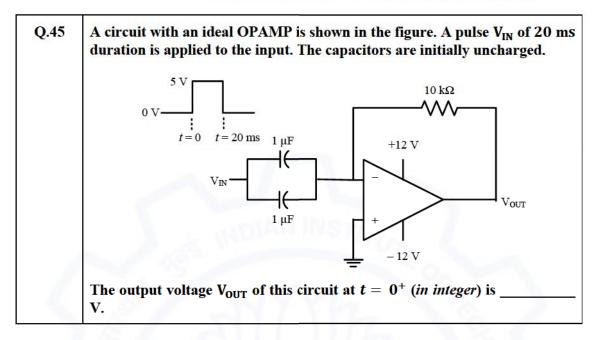


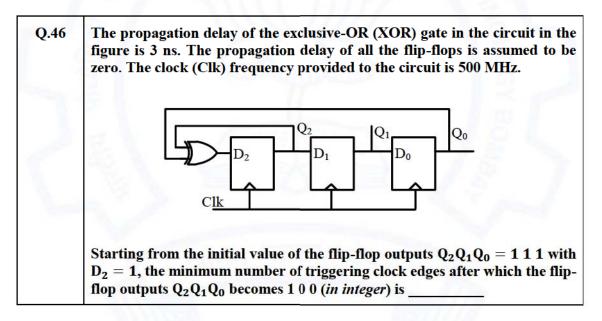
Q.42 A silicon P-N junction is shown in the figure. The doping in the P region is 5×10^{16} cm⁻³ and doping in the N region is 10×10^{16} cm⁻³. The parameters given are

Built-in voltage (Φ_{bi}) = 0.8 V Electron charge (q) = 1.6 × 10⁻¹⁹ C Vacuum permittivity (ε_0) = 8.85 × 10⁻¹² F/m Relative permittivity of silicon (ε_{si}) = 12

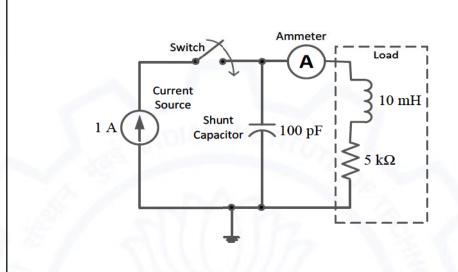


The magnitude of reverse bias voltage that would completely deplete one of the two regions (P or N) prior to the other (*rounded off to one decimal place*) is V.

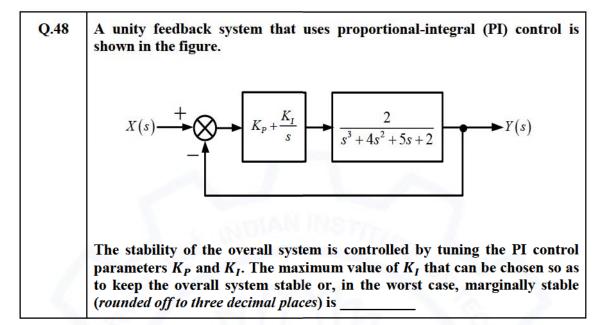



Q.44 For the transistor M₁ in the circuit shown in the figure, $\mu_n C_{ox} = 100 \ \mu A/V^2$ and (W/L) = 10, where μ_n is the mobility of electron, C_{ox} is the oxide capacitance per unit area, W is the width and L is the length.

The channel length modulation coefficient is ignored. If the gate-to-source voltage V_{GS} is 1 V to keep the transistor at the edge of saturation, then the threshold voltage of the transistor (*rounded off to one decimal place*) is ______ V.



Electronics and Communication Engineering (EC)


Q.47 The circuit in the figure contains a current source driving a load having an inductor and a resistor in series, with a shunt capacitor across the load. The ammeter is assumed to have zero resistance. The switch is closed at time t = 0.

Initially, when the switch is open, the capacitor is discharged and the ammeter reads zero ampere. After the switch is closed, the ammeter reading keeps fluctuating for some time till it settles to a final steady value. The maximum ammeter reading that one will observe after the switch is closed (rounded off to two decimal places) is А.

Electronics and Communication Engineering (EC)

Q.49	A sinusoidal message signal having root mean square value of 4 V and frequency of 1 kHz is fed to a phase modulator with phase deviation constant 2 rad/volt. If the carrier signal is $c(t) = 2\cos(2\pi 10^6 t)$, the maximum instantaneous frequency of the phase modulated signal (rounded off to one decimal place) is
	decimal place) is Hz.
Q.45	frequency of 1 kHz is fed to a phase modulator with phase deviation constan 2 rad/volt. If the carrier signal is $c(t) = 2\cos(2\pi 10^6 t)$, the maximum instantaneous frequency of the phase modulated signal (rounded off to only

Q.50	Consider a superheterodyne receiver tuned to 600 kHz. If the local oscillator feeds a 1000 kHz signal to the mixer, the image frequency (<i>in integer</i>)
	is kHz.

Q.51 In a high school having equal number of boy students and girl students, 75% of the students study Science and the remaining 25% students study Commerce. Commerce students are two times more likely to be a boy than are Science students. The amount of information gained in knowing that a randomly selected girl student studies Commerce (*rounded off to three decimal places*) is ______ bits.

Q.52	A message signal having peak-to-peak value of 2 V, root mean square value of 0.1 V and bandwidth of 5 kHz is sampled and fed to a pulse code modulation (PCM) system that uses a uniform quantizer. The PCM output is transmitted over a channel that can support a maximum transmission rate of 50 kbps. Assuming that the quantization error is uniformly distributed, the maximum signal to quantization noise ratio that can be obtained by the
	PCM system (rounded off to two decimal places) is

Q.53	Consider a polar non-return to zero (NRZ) waveform, using $+2$ V and -2				
	V for representing binary '1' and '0' respectively, is transmitted in the				
	presence of additive zero-mean white Gaussian noise with variance 0.4 V ² .				
	If the a priori probability of transmission of a binary '1' is 0.4, the optimum				
	threshold voltage for a maximum a posteriori (MAP) receiver (rounded off to				
	two decimal places) isV.				

Q.54	A standard air-filled rectangular waveguide with dimensions $a = 8$ cm, b = 4 cm, operates at 3.4 GHz. For the dominant mode of wave propagation, the phase velocity of the signal is v_p . The value (rounded off to two decimal places) of v_p/c , where c denotes the velocity of light, is

Q.55	An antenna with a directive gain of 6 dB is radiating a total power of 16 kW.
	The amplitude of the electric field in free space at a distance of 8 km from
	the antenna in the direction of 6 dB gain (rounded off to three decimal places)
	is V/m.

END OF THE QUESTION PAPER

TE

Graduate Aptitude Test in Engineering (GATE 2021)

Subject/Paper: Electronics and Communication Engineering (EC)

Q. No.	Session	Question Type MCQ/MSQ/NAT	Section Name	Answer Key/Range	Marks	Negative Marks
1	4	MCQ	GA	с	1	1/3
2	4	MCQ	GA	В	1	1/3
3	4	MCQ	GA	с	1	1/3
4	4	MCQ	GA	с	1	1/3
5	4	МСQ	GA	В	1	1/3
6	4	МСQ	GA	с	2	2/3
7	4	МСQ	GA	D	2	2/3
8	4	МСQ	GA	A	2	2/3
9	4	МСQ	GA	с	2	2/3
10	4	MCQ	GA	А	2	2/3
1	4	MCQ	EC	Α	1	1/3
2	4	MCQ	EC	В	1	1/3
3	4	MCQ	EC	в	1	1/3
4	4	MCQ	EC	В	1	1/3
5	4	MCQ	EC	с	1	1/3
6	4	MCQ	EC	D	1	1/3
7	4	MCQ	EC	Α	1	1/3
8	4	MCQ	EC	D	1	1/3
9	4	MCQ	EC	МТА	1	1/3
10	4	MCQ	EC	А	1	1/3

Q. No.	Session	Question Type MCQ/MSQ/NAT	Section Name	Answer Key/Range	Marks	Negative Marks
11	4	MCQ	EC	В	1	1/3
12	4	MCQ	EC	с	1	1/3
13	4	MCQ	EC	с	1	1/3
14	4	MCQ	EC	D	1	1/3
15	4	MCQ	EC	Α	1	1/3
16	4	NAT	EC	8.0 to 8.0	1	0
17	4	NAT	EC	0 to 0	1	0
18	4	NAT	EC	0.5 to 0.5	1	0
19	4	NAT	EC	1.0 to 1.0	1	0
20	4	NAT	EC	4.5 to 4.5	12	0
21	4	NAT	EC	2.0 to 2.0	1	0
22	4	NAT	EC	94.2 to 94.6	1	0
23	4	NAT	EC	9.24 to 9.28	1	0
24	4	NAT	EC	2.80 to 3.20	1	0
25	4	NAT	EC	9.30 to 9.44	1	0
26	4	MCQ	EC	МТА	2	2/3
27	4	MCQ	EC	В	2	2/3
28	4	MCQ	EC	С	2	2/3
29	4	MCQ	EC	С	2	2/3
30	4	MCQ	EC	Α	2	2/3
31	4	MCQ	EC	С	2	2/3
32	4	MCQ	EC	Α	2	2/3
33	4	MCQ	EC	D	2	2/3

Q. No.	Session	Question Type MCQ/MSQ/NAT	Section Name	Answer Key/Range	Marks	Negative Marks		
34	4	MCQ	EC	с	2	2/3		
<mark>35</mark>	4	MCQ	EC	A	2	2/3		
36	4	NAT	EC	10.0 to 10.0	2	0		
37	4	NAT	EC	56.50 to 56.60	2	0		
38	4	NAT	EC	0.132 to 0.146	2	0		
39	4	NAT	EC	31.9 to 32.1	2	0		
40	4	NAT	EC	0.0 to 0.0	2	0		
41	4	NAT	EC	7.9 to 8.1	2	0		
42	4	NAT	EC	8.1 to 8.4	2	0		
43	4	NAT	EC	10 to 10	2	0		
44	4	NAT	EC	0.5 to 0.5	2	0		
45	4	NAT	EC	-12 to -12	2	0		
46	4	NAT	EC	5 to 5	2	0		
47	4	NAT	EC	1.40 to 1.50	2	0		
48	4	NAT	EC	3.125 to 3.125	2	0		
49	4	NAT	EC	1011310.0 to 1011320.0	2	0		
50	4	NAT	EC	1400 to 1400	2	0		
51	4	NAT	EC	3.320 to 3.325	2	0		
52	4	NAT	EC	30.00 to 34.00	2	0		
53	4	NAT	EC	0.03 to 0.05	2	0		
54	4	NAT	EC	1.15 to 1.25	2	0		
55	4	NAT	EC	0.224 to 0.264	2	0		
MTA means Marks to All								