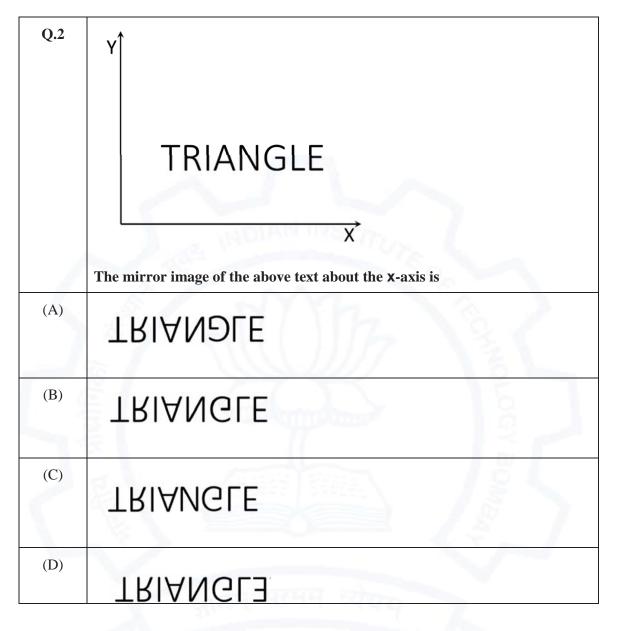


General Aptitude (GA)


Q.1 – Q.5 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: -1/3).

Q.1	Getting to the top is than staying on top.
(A)	more easy
(B)	much easy
(C)	easiest
(D)	easier

Q.3	In a company, 35% of the employees drink coffee, 40% of the employees drink tea and 10% of the employees drink both tea and coffee. What % of employees drink neither tea nor coffee?
(A)	15
(B)	25
(C)	35
(D)	40

Q.4	$ \oplus \text{ and } \odot \text{ are two operators on numbers } p \text{ and } q \text{ such that} $ $ p \oplus q = \frac{p^2 + q^2}{pq} \text{ and } p \odot q = \frac{p^2}{q}; $ If $x \oplus y = 2 \odot 2$, then $x =$
(A)	$\frac{y}{2}$
(B)	у
(C)	$\frac{3y}{2}$
(D)	2 y

Q.5	Four persons P, Q, R and S are to be seated in a row, all facing the same direction, but not necessarily in the same order. P and R cannot sit adjacent to each other. S should be seated to the right of Q. The number of distinct seating arrangements possible is:
(A)	2
(B)	4
(C)	6
(D)	8

Q. 6 – Q. 10 Multiple Choice Question (MCQ), carry TWO marks each (for each wrong answer: -2/3).

Q.6	Statement: Either P marries Q or X marries Y Among the options below, the logical NEGATION of the above statement is:
(A)	P does not marry Q and X marries Y.
(B)	Neither P marries Q nor X marries Y.
(C)	X does not marry Y and P marries Q.
(D)	P marries Q and X marries Y.

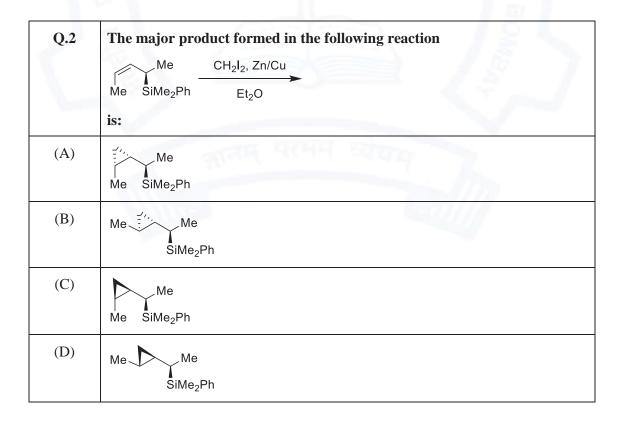
Q.7	Consider two rectangular sheets, Sheet M and Sheet N of dimensions 6 cm x 4 cm each.
	Folding operation 1: The sheet is folded into half by joining the short edges of the current shape.
	Folding operation 2: The sheet is folded into half by joining the long edges of the current shape.
	Folding operation 1 is carried out on Sheet M three times.
1	Folding operation 2 is carried out on Sheet N three times.
	The ratio of perimeters of the final folded shape of Sheet N to the final folded shape of Sheet M is
(A)	13:7
(B)	3:2
(C)	7:5
(D)	5:13

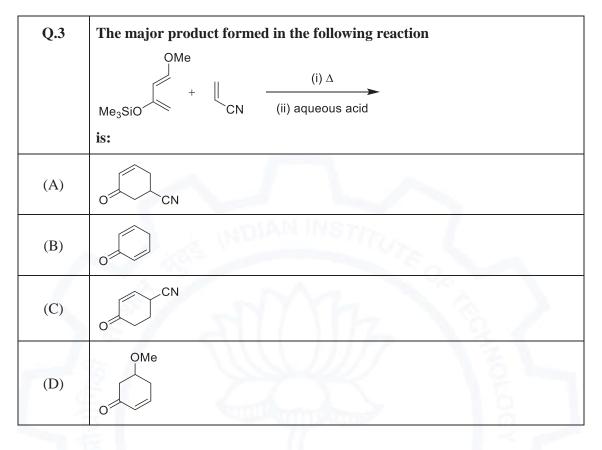
Q.8	
	S R
	S R Five line segments of equal lengths, PR, PS, QS, QT and RT are used to form a star as shown in the figure above. The value of θ, in degrees, is
(A)	Five line segments of equal lengths, PR, PS, QS, QT and RT are used to form a star as shown in the figure above.
(A) (B)	Five line segments of equal lengths, PR, PS, QS, QT and RT are used to form a star as shown in the figure above. The value of θ, in degrees, is
-	Five line segments of equal lengths, PR, PS, QS, QT and RT are used to form a star as shown in the figure above. The value of θ, in degrees, is 36

Q.9	A function, λ , is defined by
	$\lambda(p,q) = \begin{cases} \left(p-q\right)^2, & \text{if } p \ge q, \\ p+q, & \text{if } p < q. \end{cases}$
	The value of the expression $\frac{\lambda(-(-3+2),(-2+3))}{(-(-2+1))}$ is:
(A)	-1
(B)	0
(C)	$\frac{16}{3}$
(D)	16

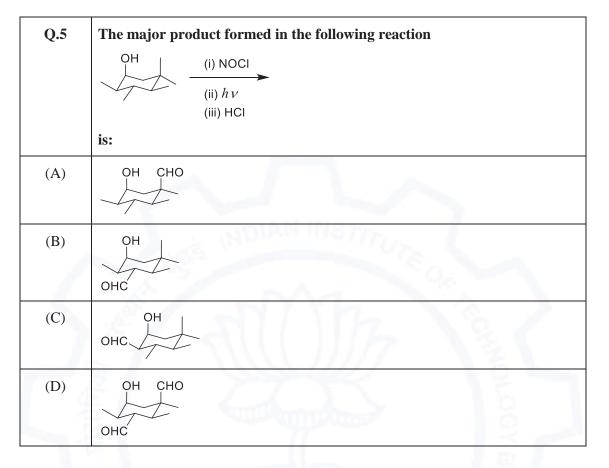
GATE

2@21


Q.10	Humans have the ability to construct worlds entirely in their minds, which don't exist in the physical world. So far as we know, no other species possesses this ability. This skill is so important that we have different words to refer to its different flavors, such as imagination, invention and innovation. Based on the above passage, which one of the following is TRUE?
(A)	No species possess the ability to construct worlds in their minds.
(B)	The terms imagination, invention and innovation refer to unrelated skills.
(C)	We do not know of any species other than humans who possess the ability to construct mental worlds.
(D)	Imagination, invention and innovation are unrelated to the ability to construct mental worlds.


Q.1 – Q.14 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: – 1/3).

Q.1	The rates of alkaline hydrolysis of the compounds shown below
	t-Bu t-Bu t-Bu t-Bu
	I II III
	follow the order:
(A)	I > II > III
(B)	II > I > III
(C)	II > III > I
(D)	III > I > II



Q.4	The <u>least</u> acidic among the following compounds
	MeO ₂ C — H O MeO OH O O OH S OH
	M N O P
	is:
(A)	М
(B)	N
(C)	0
(D)	P

Q.6	The reagent(s) required for the conversion of hex-3-yne to (<i>E</i>)-hex-3-ene is/are:
(A)	H ₂ , Pd/BaSO ₄
(B)	Bu ₃ SnH
(C)	Li / liquid NH ₃
(D)	LiAlH ₄

Q.7	An organic compound exhibits the $[M]^+$, $[M+2]^+$ and $[M+4]^+$ peaks in the intensity ratio 1:2:1 in the mass spectrum, and shows a singlet at δ 7.49 in the ¹ H NMR spectrum in CDCl ₃ . The compound is:	
(A)	1,4-dichlorobenzene	
(B)	1,4-dibromobenzene	
(C)	1,2-dibromobenzene	
(D)	1,2-dichlorobenzene	

Q.8	Reaction of LiAlH ₄ with one equivalent of Me ₃ N·HCl gives a tetrahedral compound, which reacts with another equivalent of Me ₃ N·HCl to give compound N. The compound N and its geometry, respectively, are:
(A)	LiAlH ₄ NMe ₃ and trigonal bipyramidal
(B)	Li ₂ AlH ₄ Cl and square pyramidal
(C)	AlH ₃ (NMe ₃) ₂ and trigonal bipyramidal
(D)	AlH ₃ (NMe ₃) ₂ and pentagonal

Q.9	Which one of the following is a non-heme protein?
(A)	hemoglobin
(B)	hemocyanin
(C)	myoglobin
(D)	cytochrome P-450

Q.10	A correct example of a nucleotide is:
(A)	adenosine monophosphate (AMP)
(B)	RNA
(C)	uridine
(D)	DNA

Q.11	The equilibrium constant for the reaction 3 NO (g) \rightleftharpoons N ₂ O (g) + NO ₂ (g) at 25 °C is closest to: [$\Delta G^\circ = -104.18$ kJ; $R = 8.314$ J mol ⁻¹ K ⁻¹]	
(A)	1.043	19-
(B)	$1.8 imes 10^{18}$	
(C)	1.651	1
(D)	$5.7 imes 10^{-19}$	I S L

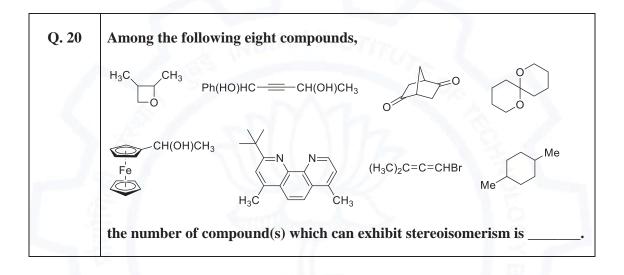
Q.12	The reaction of NiBr ₂ with two equivalents of PPh ₃ in CS ₂ at -78 °C gives a red-colored diamagnetic complex, [NiBr ₂ (PPh ₃) ₂]. This transforms to a green-colored paramagnetic complex with the same molecular formula at 25 °C. The geometry and the number of unpaired electrons in the green-colored complex, respectively, are:
(A)	tetrahedral and 1
(B)	tetrahedral and 2
(C)	square planar and 2
(D)	square planar and 4

Q.13	The rate of the substitution reaction of $[Co(CN)_5Cl]^{3-}$ with OH ⁻ to give $[Co(CN)_5(OH)]^{3-}$
(A)	depends on the concentrations of both $[Co(CN)_5Cl]^{3-}$ and OH^-
(B)	depends on the concentration of $[Co(CN)_5Cl]^{3-}$ only
(C)	is directly proportional to the concentration of OH ⁻ only
(D)	is inversely proportional to the concentration of OH ⁻

Q.14	The Δ_0 of $[Cr(H_2O)_6]^{3+}$, $[CrF_6]^{3-}$ and $[Cr(CN)_6]^{3-}$ follows the order:	100
(A)	$[Cr(H_2O)_6]^{3+} > [CrF_6]^{3-} > [Cr(CN)_6]^{3-}$	
(B)	$[CrF_6]^{3-} > [Cr(H_2O_6)]^{3+} > [Cr(CN_6)]^{3-}$	181
(C)	$[Cr(CN)_6]^{3-} > [Cr(H_2O)_6]^{3+} > [CrF_6]^{3-}$	18 1
(D)	$[CrF_6]^{3-} > [Cr(CN)_6]^{3-} > [Cr(H_2O)_6]^{3+}$	\sim

Q.15 – Q.18 Multiple Select Question (MSQ), carry ONE mark each (no negative marks).

Q.16	Acceptable wavefunctions for a quantum particle must be:
(A)	odd
(B)	even
(C)	single-valued
(D)	continuous


Q. 17	The characters of <i>E</i> , <i>C</i> ₂ , σ_{ν} , and σ'_{ν} symmetry operations, in this order, for valid irreducible representation(s) of the <i>C</i> _{2ν} point group is/are:	
(A)	1, 1, 1, 1	
(B)	-1, 1, 1, -1	
(C)	1, -1, 1, -1	
(D)	1, -1, -1, -1	

Q. 18	The normal mode(s) of vibration of H ₂ O is/are:
(A)	
(B)	H H
(C)	
(D)	

Q.19 – Q.25 Numerical Answer Type (NAT), carry ONE mark each (no negative marks).

Q. 19	A reversible heat engine absorbs 20 kJ of heat from a source at 500 K and dissipates it to the reservoir at 400 K. The efficiency of the heat engine is%.

Q. 21	The Mo–Mo bond order in $[(\eta^5-C_5H_5)Mo(CO)_2]_2$ which obeys the 18-electron rule is

Q. 22	The change in enthalpy (Δ H) for the reaction
	$2 \mathbf{P}(\mathbf{s}) + 3 \mathbf{Br}_2(\mathbf{l}) \rightarrow 2 \mathbf{PBr}_3(\mathbf{l})$
	is -243 kJ. In this reaction, if the amount of phosphorus consumed is 3.1 g, the change in enthalpy (rounded off to two decimal places) is kJ.
	[Atomic Wt. of P = 31]

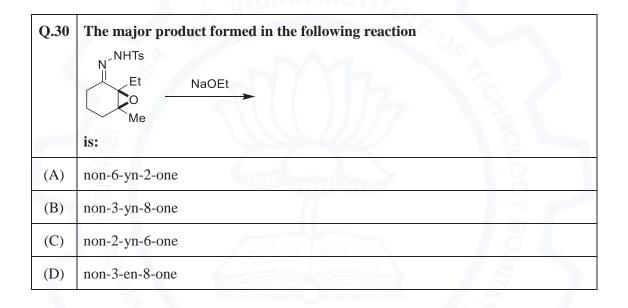
Q. 23	The number of signal(s) in the ¹ H NMR spectrum of the following compound
	O Br O
	recorded at 25 °C in CDCl ₃ is

Q. 24	A 5 V battery delivers a steady current of 1.5 A for a period of 2 h. The total
	charge that has passed through the circuit is Coulombs.

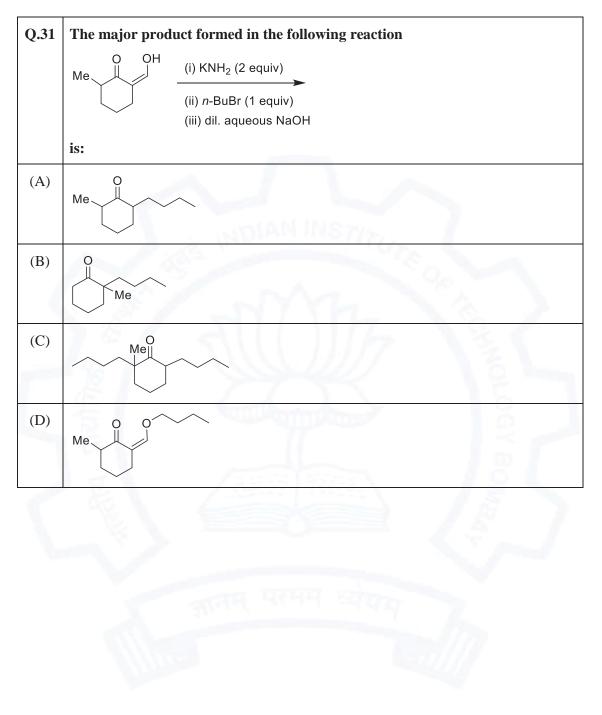
Q. 25	The spin-only magnetic moment of [Co(H ₂ O) ₆] ²⁺ (rounded off to one
	decimal place) is BM.

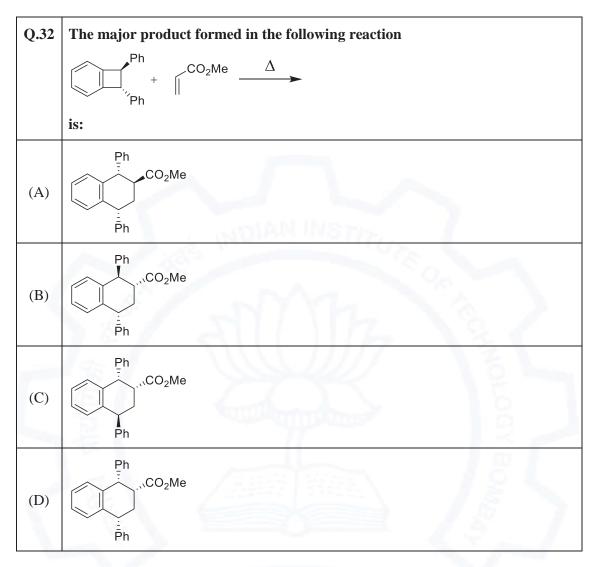
Q.26-Q.42 Multiple Choice Question (MCQ), carry TWO mark each (for each wrong answer: -2/3).

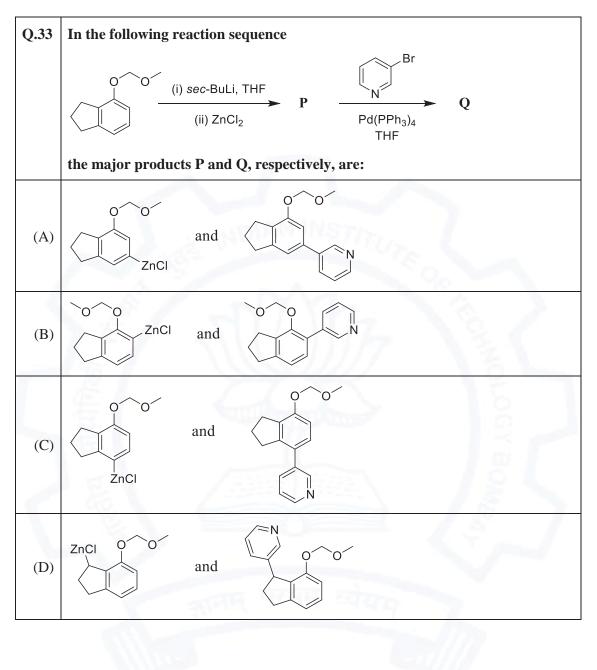
Q.26	The geometry and the number of unpaired electrons in tetrakis(1- norbornyl)Co
	Co 4
	respectively, are:
(A)	tetrahedral and one
(B)	tetrahedral and five
(C)	square planar and one
(D)	square planar and three

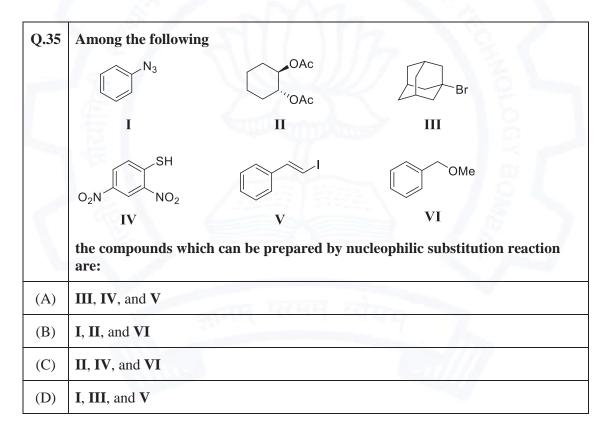

Q.27	The yellow color of an aqueous solution of K ₂ CrO ₄ changes to red-orange upon the addition of a few drops of HCl. The red-orange complex, the oxidation state of its central element(s), and the origin of its color, respectively, are:
(A)	chromium chloride, +3, d-d transition
(B)	dichromate ion, +6 and +6, charge transfer
(C)	perchlorate ion, +7, charge transfer
(D)	chromic acid, +6, charge transfer

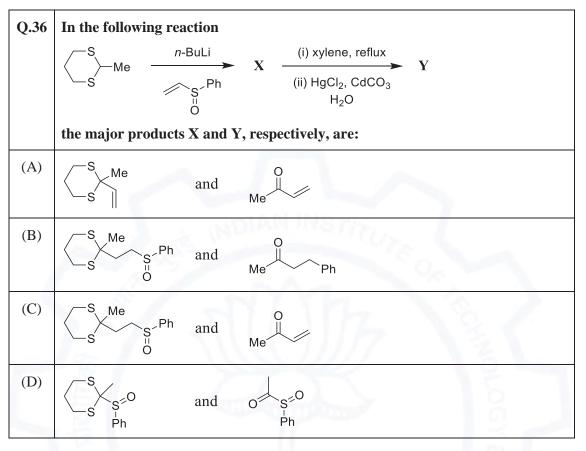
जानम् परमन् व्ययद


Q.28	The shapes of the compounds CIF3, XeOF2, N3 ⁻ and XeO3F2 respectively, are:
(A)	T-shape, T-shape, linear and trigonal bipyramidal
(B)	trigonal planar, T-shape, V-shape and square pyramidal
(C)	T-shape, trigonal planar, linear and square pyramidal
(D)	trigonal planar, trigonal planar, V-shape and trigonal bipyramidal

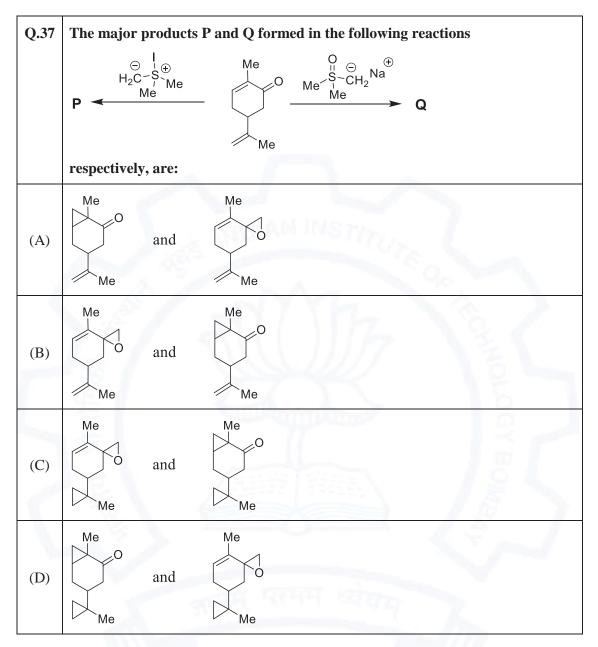

Q.29	The metal borides that contain isolated boron atoms are:
(A)	Tc ₇ B ₃ and Re ₇ B ₃
(B)	Cr ₅ B ₃ and V ₃ B ₂
(C)	Ti ₄ B ₄ and V ₃ B ₄
(D)	TiB and HfB

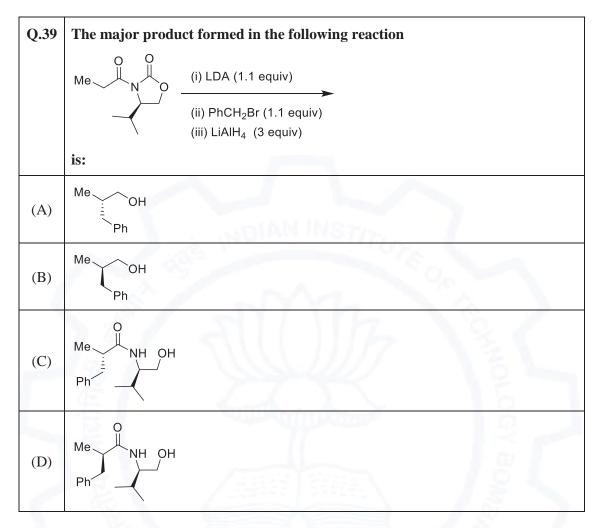






Q.34In an electrochemical cell, Ag+ ions in AgNO3 are reduced to Ag metal at the
cathode and Cu is oxidized to Cu2+ at the anode. A current of 0.7 A is passed
through the cell for 10 min. The mass (in grams) of silver deposited and copper
dissolved, respectively, are:
[Faraday Constant = 96,485 C mol-1, Atomic Weight of Ag = 107.9, Atomic
Weight of Cu = 63.55](A)0.469 and 0.138(B)0.235 and 0.138(C)0.469 and 0.069(D)0.235 and 0.069





Q.38	The major product formed in the reaction of $(2R,3R)$ -2-bromo-3-methylpentane with NaOMe is:
(A)	(Z)-3-methylpent-2-ene
(B)	(<i>E</i>)-3-methylpent-2-ene
(C)	(2R,3R)-2-methoxy-3-methylpentane
(D)	(2 <i>S</i> ,3 <i>R</i>)-2-methoxy-3-methylpentane

Q.40	Hexane and heptane are completely miscible. At 25 °C, the vapor pressures of hexane and heptane are 0.198 atm and 0.06 atm, respectively. The mole fractions of hexane and heptane in the vapor phase for a solution containing 4 M hexane and 6 M heptane, respectively, are:
(A)	0.688 and 0.312
(B)	0.400 and 0.600
(C)	0.312 and 0.688
(D)	0.600 and 0.400

Q.41	The correct order of Lewis acid strengths of BF ₂ Cl, BFClBr, BF ₂ Br and BFBr ₂ is:
(A)	$BF_2Cl > BFClBr > BF_2Br > BFBr_2$
(B)	$BFBr_2 > BFClBr > BF_2Br > BF_2Cl$
(C)	$BF_2Cl > BF_2Br > BFClBr > BFBr_2$
(D)	$BFClBr > BFBr_2 > BF_2Cl > BF_2Br$

Q.42	The correct order of increasing intensity (molar absorptivity) of the UV-visible absorption bands for the ions $[Ti(H_2O)_6]^{3+}$, $[Mn(H_2O)_6]^{2+}$, $[CrO_4]^{2-}$, and $[NiCl_4]^{2-}$ is:
(A)	$[Ti(H_2O)_6]^{3+} < [Mn(H_2O)_6]^{2+} < [CrO_4]^{2-} < [NiCl_4]^{2-}$
(B)	$[Mn(H_2O)_6]^{2+} < [Ti(H_2O)_6]^{3+} < [NiCl_4]^{2-} < [CrO_4]^{2-}$
(C)	$[NiCl_4]^{2-} < [Ti(H_2O)_6]^{3+} < [Mn(H_2O)_6]^{2+} < [CrO_4]^{2-}$
(D)	$[Ti(H_2O)_6]^{3+} < [NiCl_4]^{2-} < [CrO_4]^{2-} < [Mn(H_2O)_6]^{2+}$

Q.43 – Q.44 Multiple Select Question (MSQ), carry TWO mark each (no negative marks).

Q.43	The correct statement(s) about the concentration of $Na^{\scriptscriptstyle +}$ and $K^{\scriptscriptstyle +}$ ions in animal cells is/are:
(A)	$[K^+]$ inside the cell > $[K^+]$ outside the cell
(B)	$[Na^+]$ inside the cell > $[Na^+]$ outside the cell
(C)	[Na ⁺] inside the cell < [Na ⁺] outside the cell
(D)	$[K^+]$ inside the cell < $[K^+]$ outside the cell

Q.44	The correct statement(s) about actinides is/are:
(A)	The 5f electrons of actinides are bound less tightly than the 4f electrons.
(B)	The trans uranium elements are prepared artificially.
(C)	All the actinides are radioactive.
(D)	Actinides do not exhibit actinide contraction.

Q.45 – Q.55 Numerical Answer Type (NAT), carry TWO mark each (no negative marks).

Q.45	The number of photons emitted per nanosecond by a deuterium lamp (400 nm) having a power of 1 microwatt (rounded off to the nearest integer) is
	$[h = 6.626 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}; c = 3.0 \times 10^8 \text{ m s}^{-1}]$

Q.46	Given the initial weight of 1 mg of radioactive ${}^{60}_{27}$ Co (half-life = 5.27 years), the
	amount disintegrated in 1 year (rounded off to two decimal places) is
	mg.

Q.47	The de Broglie wavelength of an argon atom (mass = 40 amu) traveling at a speed of 250 m s ⁻¹ (rounded off to one decimal place) is picometers.	
	$[N = 6.022 \times 10^{23}; h = 6.626 \times 10^{-34} \text{ kg m}^2 \text{ s}^{-1}]$	

Q.48	The molar absorption coefficient of a substance dissolved in cyclohexane is
	1710 L mol ⁻¹ cm ⁻¹ at 500 nm. The reduction in intensity of light of the same
	wavelength that passes through a cell of 1 mm path length containing a 2 mmol
	L ⁻¹ solution (rounded off to one decimal place) is%.

Q.49	The fundamental vibrational frequency of ¹ H ¹²⁷ I is 2309 cm ⁻¹ . The force	
	constant for this molecule (rounded off to the nearest integer) isN m ⁻¹ .	
	$[N = 6.022 \times 10^{23}, c = 3.0 \times 10^8 \mathrm{m \ s^{-1}}]$	

Q.50	A laser Raman spectrometer operating at 532 nm is used to record the
	vibrational spectrum of Cl ₂ having its fundamental vibration at 560 cm ⁻¹ . The
	Stokes line corresponding to this vibration will be observed at cm ⁻¹ .
	(Rounded off to the nearest integer)

Q.51	The vapor pressure of toluene (Mol. Wt. = 92) is 0.13 atm at 25 °C. If 6 g of a
	hydrocarbon is dissolved in 92 g of toluene, the vapor pressure drops to 0.12
	atm. The molar mass of the hydrocarbon (rounded off to the nearest integer) is
	•

Q.52	The reaction
	$CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$
	at 500 °C, with initial pressures of 0.7 bar of CO and 1.0 bar of Cl ₂ , is allowed to reach equilibrium. The partial pressure of COCl ₂ (g) at equilibrium is 0.15 bar. The equilibrium constant for this reaction at 500 °C (rounded off to two decimal places) is

Q.53	The rate constants for the decomposition of a molecule in the presence of oxygen are 0.237×10^{-4} L mol ⁻¹ s ⁻¹ at 0 °C and 2.64×10^{-4} L mol ⁻¹ s ⁻¹ at 25 °C
	$(R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}).$
	The activation energy for this reaction (rounded off to one decimal place) is kJ mol ⁻¹ .

Q.54	2 L of a gas at 1 atm pressure is reversibly heated to reach a final volume of 3.5
	L. The absolute value of the work done on the gas (rounded off to the nearest
	integer) is Joules.

Q.55	The quantity of the cobalt ore [Co ₃ (AsO ₄) ₂ ·H ₂ O] required to obtain 1 kg of cobalt (rounded off to two decimal places) is kg.	
	[Atomic Wt. of Co = 59, As = 75, O = 16, H = 1]	

END OF THE QUESTION PAPER

Graduate Aptitude Test in Engineering (GATE 2021)

Answer Keys and Marks for Subject/Paper: Chemistry (CY)

Q. No.	Session	Question Type MCQ/MSQ/NAT	Section Name	Answer Key/Range	Marks	Negative Marks
1	1	MCQ	GA	D	1	1/3
2	1	MCQ	GA	В	1	1/3
3	1	MCQ	GA	С	1	1/3
4	1	MCQ	GA	В	1	1/3
5	1	MCQ	GA	c	1	1/3
6	1	MCQ	GA	В	2	2/3
7	1	MCQ	GA	A	2	2/3
8	1	MCQ	GA	A	2	2/3
9	1	MCQ	GA	в	2	2/3
10	1	MCQ	GA	с	2	2/3
1	1	MCQ	CY	С	1	1/3
2	1	MCQ	СҮ	Α	1	1/3
3	1	MCQ	CY	c_4/	1	1/3
4	1	MCQ	CY	Α	1	1/3
5	1	MCQ	CY	Α	1	1/3
6	1	MCQ	СҮ	С	1	1/3
7	1	MCQ	CY	В	1	1/3
8	1	MCQ	CY	с	1	1/3
9	1	MCQ	CY	В	1	1/3
10	1	MCQ	СҮ	Α	1	1/3

Q. No.	Session	Question Type MCQ/MSQ/NAT	Section Name	Answer Key/Range	Marks	Negative Marks
11	1	MCQ	CY	В	1	1/3
12	1	MCQ	CY	В	1	1/3
13	1	MCQ	CY	В	1	1/3
14	1	MCQ	СҮ	с	1	1/3
15	1	MSQ	СҮ	A; C	1	0
16	1	MSQ	СҮ	C; D	1	0
17	1	MSQ	СҮ	A; C	1	0
18	1	MSQ	СҮ	A; B; C	1	0
19	1	NAT	СҮ	20 to 20	1	0
20	1	NAT	СҮ	6 to 6	1	0
21	1	NAT	СҮ	3 to 3	1	0
22	1	NAT	СҮ	-12.16 to -12.14	1	0
23	1	NAT	СҮ	3 to 3	1	0
24	1	NAT	СҮ	10800 to 10800	1	0
25	1	NAT	СҮ	3.8 to 4.0	1	0
26	1	MCQ	СҮ	A	2	2/3
27	1	MCQ	CY	В	2	2/3
28	1	MCQ	СҮ	A	2	2/3
29	1	MCQ	СҮ	А	2	2/3
30	1	MCQ	СҮ	A	2	2/3
31	1	MCQ	СҮ	В	2	2/3
32	1	MCQ	СҮ	D	2	2/3
33	1	MCQ	СҮ	В	2	2/3

Q. No.	Session	Question Type MCQ/MSQ/NAT	Section Name	Answer Key/Range	Marks	Negative Marks
34	1	MCQ	CY	Α	2	2/3
35	1	MCQ	CY	С	2	2/3
36	1	MCQ	CY	С	2	2/3
37	1	MCQ	СҮ	В	2	2/3
38	1	MCQ	СҮ	В	2	2/3
39	1	MCQ	СҮ	A	2	2/3
40	1	MCQ	СҮ	A	2	2/3
41	1	MCQ	СҮ	В	2	2/3
42	1	MCQ	СҮ	в	2	2/3
43	1	MSQ	СҮ	A; C	2	0
44	1	MSQ	СҮ	A; B; C	2	0
45	1	NAT	СҮ	2000 to 2020	2	0
46	1	NAT	СҮ	0.11 to 0.13	2	0
47	1	NAT	СҮ	39.5 to 40.5	2	0
48	1	NAT	СҮ	54.0 to 55.0	2	0
49	1	NAT	СҮ	309 to 315	2	0
50	1	NAT	СҮ	18225 to 18245	2	0
51	1	NAT	СҮ	71 to 73	2	0
52	1	NAT	СҮ	0.30 to 0.34	2	0
53	1	NAT	СҮ	65.0 to 66.0	2	0
54	1	NAT	СҮ	151 to 153	2	0
55	1	NAT	СҮ	2.50 to 2.80	2	0