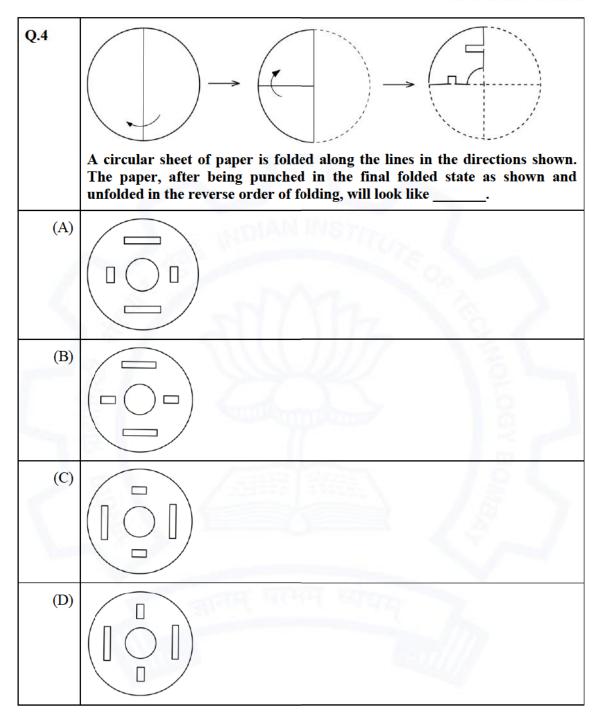


General Aptitude (GA)

Q.1 – Q.5 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: -1/3).

Q.1	The ratio of boys to girls in a class is 7 to 3. Among the options below, an acceptable value for the total number of students in the class is:		
(A)	21		
(B)	37		
(C)	50		
(D)	73		

Q.2	A polygon is convex if, for every pair of points, P and Q belonging to the polygon, the line segment PQ lies completely inside or on the polygon. Which one of the following is <u>NOT</u> a convex polygon?
(A)	
(B)	
(C)	जानम् परमम् ध्येषम्
(D)	



Q.3	Consider the following sentences:			
	 (i) Everybody in the class is prepared for the exam. (ii) Babu invited Danish to his home because he enjoys playing chess. Which of the following is the CORRECT observation about the above two sentences? 			
(A)	(i) is grammatically correct and (ii) is unambiguous			
(B)	(i) is grammatically incorrect and (ii) is unambiguous			
(C)	(i) is grammatically correct and (ii) is ambiguous			
(D)	(i) is grammatically incorrect and (ii) is ambiguous			

Q.5	is to <i>surgery</i> as <i>writer</i> is to Which one of the following options maintains a similar logical relation in the above sentence?	
(A)	Plan, outline	
(B)	Hospital, library	
(C)	Doctor, book	
(D)	Medicine, grammar	

Q. 6 – Q. 10 Multiple Choice Question (MCQ), carry TWO marks each (for each wrong answer: -2/3).

Q.6	We have 2 rectangular sheets of paper, M and N, of dimensions 6 cm x 1 c each. Sheet M is rolled to form an open cylinder by bringing the short edg of the sheet together. Sheet N is cut into equal square patches and assemble to form the largest possible closed cube. Assuming the ends of the cylind are closed, the ratio of the volume of the cylinder to that of the cube		
(A)	$\frac{\pi}{2}$		
(B)	$\frac{3}{\pi}$		
(C)	$\frac{9}{\pi}$		
(D)	3π		

Q.7					2
	Items	Cost (₹)	Profit %	Marked Price (₹)	
	Р	5,400		5,860	
	Q		25	10,000	
	between the mark	ked price and the atio of the different lling price-Cost Cost	the selling print private selling selling private selling pri	nt is calculated as th ce. The profit poselling price and cos arked price, is	ercentage is
(A)	25				
(B)	12.5				
(C)	10				
(D)	5				

Q.8	There are five bags each containing identical sets of ten distinct chocolates. One chocolate is picked from each bag. The probability that at least two chocolates are identical is			
(A)	0.3024			
(B)	0.4235			
(C)	0.6976			
(D)	0.8125			

Q.9	Given below are two statements 1 and 2, and two conclusions I and II. Statement 1: All bacteria are microorganisms. Statement 2: All pathogens are microorganisms. Conclusion I: Some pathogens are bacteria. Conclusion II: All pathogens are not bacteria. Based on the above statements and conclusions, which one of the following options is logically CORRECT?	
(A)	Only conclusion I is correct	
(B)	Only conclusion II is correct	
(C)	Either conclusion I or II is correct.	
(D)	Neither conclusion I nor II is correct.	

Q.10	Some people suggest anti-obesity measures (AOM) such as displaying calorie information in restaurant menus. Such measures sidestep addressing the core problems that cause obesity: poverty and income inequality. Which one of the following statements summarizes the passage?	
(A)	The proposed AOM addresses the core problems that cause obesity.	
(B)	If obesity reduces, poverty will naturally reduce, since obesity causes poverty.	
(C)	AOM are addressing the core problems and are likely to succeed.	
(D)	AOM are addressing the problem superficially.	

Biotechnology (BT)

Q.1 – Q.17 Multiple Choice Question (MCQ), carry ONE mark each (for each wrong answer: -1/3).

Q.1	Coronavirus genome consists of
(A)	double-stranded DNA
(B)	double-stranded RNA
(C)	negative-sense single-stranded RNA
(D)	positive-sense single-stranded RNA

Q.2	The enzyme that transcribes the eukaryotic genes encoding precuribosomal RNAs (pre-rRNAs) of 28S, 18S and 5.8S rRNAs is			
(A)	RNA polymerase I			
(B)	RNA polymerase II			
(C)	RNA polymerase III			
(D)	RNA polymerase IV			

Q.3	Number of unrooted trees in a phylogeny of five sequences is		
(A)	3		
(B)	15		
(C)	105		
(D)	945		

Q.4	Which one of the following methods is used to test the significance of a predicted phylogeny?
(A)	Bootstrap
(B)	Maximum likelihood
(C)	Maximum parsimony
(D)	Minimum evolution

Q.5	The Cartesian coordinates (x, y) of a point A with polar coordinates $(4, \frac{\pi}{4})$ is
(A)	$\left(\sqrt{3}, 2\sqrt{2}\right)$
(B)	$(2, 2\sqrt{3})$
(C)	$(2\sqrt{2},\sqrt{3})$
(D)	$(2\sqrt{2}, 2\sqrt{2})$

Q.6	The order of genes present in a chromosome is as follows.
	LM NOPQ
	Which one of the following rearrangements represents a paracentric inversion?
(A)	LON MPQ
(B)	LM NPOQ
(C)	L M M N N O P Q
(D)	LMN OPQ

Q .7	Which one of the following statements is INCORRECT about hybridoma production?
(A)	Hybridoma cells can use hypoxanthine and thymidine
(B)	DNA synthesis in myeloma cells is blocked by aminopterin
(C)	Hybridoma cells are made to produce polyclonal antibodies
(D)	Polyethylene glycol is used to fuse myeloma cells to B-cells

Q.8	$\frac{d}{dx} \left[\ln(2x) \right]$ is equal to
(A)	$\frac{1}{2x}$
(B)	$\frac{1}{x}$
(C)	$\frac{1}{2}$
(D)	x

NA microarray
ectroporation
ene gun
icroinjection
e

Q.10	Under standard temperature (T) and pressure (P) conditions, $128g$ of an ideal gas molecule A occupies a volume of $1L$. The gas molecule A obeys the relationship $RT = 0.25PV$. R and V are universal gas constant and ideal gas volume, respectively. The molecule A is
(A)	CO ₂
(B)	H ₂
(C)	N ₂
(D)	O ₂
	All and a second s

Q.11	CRISPR-Cas system is associated with
(A)	adaptive immunity in eukaryotes
(B)	adaptive immunity in prokaryotes
(C)	innate immunity in eukaryotes
(D)	innate immunity in prokaryotes

Q.12	The process by which intracellular macromolecules are supplied for lysosomal degradation during nutrient starvation is
(A)	apoptosis
(B)	autophagy
(C)	phagocytosis
(D)	pinocytosis
	Aller and a second s

Q.13 The process and instrumentation diagram for a feedback control strategy to maintain the level (h) of a liquid by regulating a value (V) in a tank is shown below. F_1 is inlet liquid flow rate, F_2 is outlet liquid flow rate, LT is the liquid level transmitter, LC is the liquid level controller, h_{sp} is the setpoint value of the liquid level, h_m is the measured value of the liquid level and P_V is the value pressure. P_V h_{m} L h F_2 The manipulating variable(s) is/are (A) F_1 only **(B)** F_2 only (C) h_m and P_V only (D) h_{sp} and P_V only

Q.14	A protein without its prosthetic gro	up is known as
(A)	apoprotein	Section 1
(B)	hemoprotein	
(C)	holoprotein	
(D)	lipoprotein	

Q.15	The enzyme which adds phosphate group to the free 5' terminus of a DNA sequence is
(A)	adenosine kinase
(B)	alkaline phosphatase
(C)	polynucleotide kinase
(D)	terminal deoxynucleotidyl transferase

Q.16	Which one of the following is CORRECT about microbial growth medium?	
(A)	Luria-Bertani broth is a synthetic medium	
(B)	Nutrient broth is a defined medium	
(C)	Sabouraud dextrose agar is a differential medium	
(D)	Trypticase soy agar is a complex medium	

Q.17	The cellular process which utilizes RNA-induced silencing complex to block gene expression is		
(A)	RNA editing		
(B)	RNA interference		
(C)	RNA polyadenylation		
(D)	RNA splicing		

Q.18 – Q.19 Multiple Select Question (MSQ), carry ONE mark each (no negative marks).

Q.18	Which of the following layer(s) is/are formed from the inner cell mass of the blastocyst?	
(A)	Ectoderm	
(B)	Endoderm	
(C)	Mesoderm	
(D)	Trophectoderm	

Q.19	Which of the following cell organelle(s) is/are surrounded by phospholipid membrane?	oy a single
(A)	Golgi apparatus	
(B)	Lysosome	2
(C)	Mitochondria	2
(D)	Nucleus	5. 6.

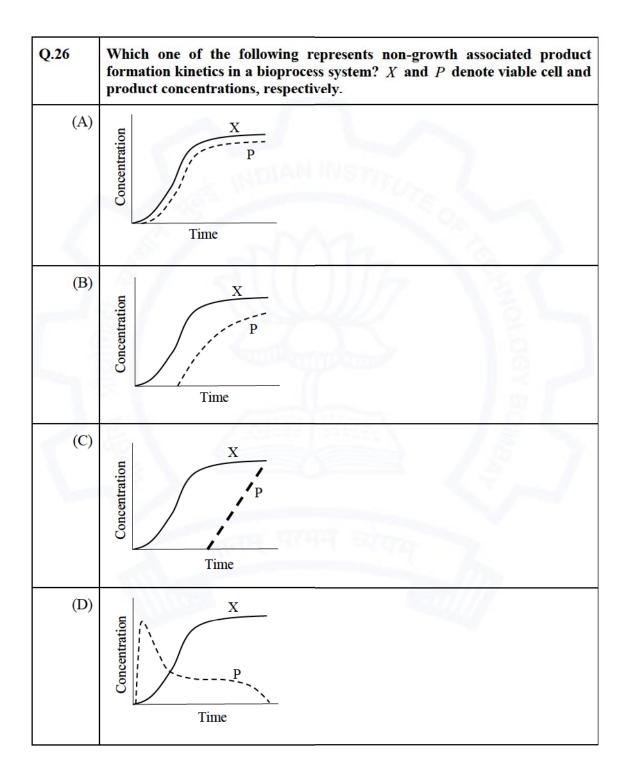
Q.20 - Q.25 Numerical Answer Type (NAT), carry ONE mark each (no negative marks).

Q.20	The sum of the infinite geometric series $1 + \frac{1}{3} + \frac{1}{3^2} + \frac{1}{3^3} + \dots$ (rounded off to
	one decimal place) is

Q.21 Three balls, colored in blue, green and red, are successively transferred from box A to box B in the order BLUE-GREEN-RED. The probability of a reverse transfer of the balls to the box A in the same order (rounded off to two decimal places) is _____.

Q.22	Decimal reduction time of a bacterial strain is 20 min. Specific death rate	
	constant in <i>min</i> ⁻¹ (rounded off to two decimal places) is	

Q.23	The value of $\lim_{x\to 0} \left[\frac{x - \sin 2x}{x - \sin 5x} \right]$ (rounded off to two decimal places) is
------	--


A system consists of two reactors, connected by a valve. The first reactor (R1)
contains an ideal gas A of volume $5L$ and the second reactor (R2) has an ideal
gas B of volume 10 L . Initially, the value is closed and pressure P in $R1$ and
R2 are 9 and 6 atm, respectively. Later, when the valve is opened, the system
reaches equilibrium. If the temperature T of both the reactors is maintained
constant, the final equilibrium pressure in <i>atm</i> of the system is

Q.25	The enzyme $lpha$ -amylase used in starch hydrolysis has an affinity constant $\left(K_{_m} ight)$
	value of $0.005 M$. To achieve one-fourth of the maximum rate of hydrolysis, the required starch concentration in mM (rounded off to two decimal places) is

Q.26 – Q.34 Multiple Choice Question (MCQ), carry TWO mark each (for each wrong answer: -2/3).

Q.27	Match enzymes in Group I with their corresponding industrial application in Group II.		
	Group I	Group II 1. Laundry detergent	
	P. Amylase		
	Q. Invertase	2. Fruit juice clarification	
	R. Pectinase	3. Liquefaction of sucrose	
	S. Xylanase	4. Pulp and paper processing	
(A)	P-2, Q-3, R-4, S-1	Mh A	
(B)	P-1, Q-3, R-2, S-4	11/2 181	
(C)	P-1, Q-2, R-3, S-4		
(D)	P-1, Q-4, R-2, S-3		

Q.28	Match separation methods in Group I with associated properties in Group II.				
		Group I	Group II		
P. Centrifugation 1. Density Q. Dialysis 2. Diffusive		P. Centrifugation	1. Density		
		2. Diffusivity			
		R. Solvent extraction	3. Size		
		S. Ultrafiltration	4. Solubility		
(A)) P-4, Q-2, R	P-4, Q-2, R-1, S-3			
(B)) P-3, Q-1, R	P-3, Q-1, R-2, S-4			
(C) P-1, Q-3, R	P-1, Q-3, R-2, S-4			
(D)) P-1, Q-2, R-	P-1, Q-2, R-4, S-3			

Q.29	Match the autoimmune diseases in Group I with the corresponding primarily affected organ in Group II.			
	Group I	Group II		
	P. Hashimoto's disease	1. Brain		
	Q. Juvenile diabetes	2. Pancreas		
	R. Multiple sclerosis	3. Skeletal muscle		
	S. Myasthenia gravis	4. Thyroid		
(A)	P-1, Q-2, R-3, S-4	h \a >		
(B)	P-3, Q-1, R-2, S-4			
(C)	P-4, Q-2, R-1, S-3			
(D)	P-1, Q-2, R-4, S-3			

Q.30	Match hypersensitivity types in Group I with their corresponding condition in Group II.			
	2	Group I	Group II	
		P. Type I	1. Erythroblastosis fetalis	
		Q. Type II	2. Host reaction to bee venom	
	5	R. Type III	3. Systemic lupus erythematosus	
		S. Type IV	4. Tuberculin reaction	
(A)) P-2, Q-3,	R-1, S-4		
(B)) P-3, Q-1,	R-4, S-2		
(C) P-2, Q-3,	R-4, S-1		
(D)) P-2, Q-1,	R-3 , S-4		

Q.31	Which of the function are	tions of plant hormones and their associated				
		Hormone	Function			
		P. Abscisic acid	Breaks seed dormancy			
		Q. Auxin	Induces cell division			
	16-2 M	R. Ethylene	Stimulates ripening of fruits			
		S. Gibberellin	Promotes seed dormancy			
(A)	P and R only	- N	the No. S.			
(B)	P and S only	all	16 181			
(C)	Q and R only					
(D)	Q and S only	Lake .				

Q.32	Which one of the following tools is used to compare all the possible six-open reading frames of a given nucleotide query sequence with all the available six-open reading frames of the nucleotide sequence database?
(A)	BLASTN
(B)	BLASTX
(C)	TBLASTN
(D)	TBLASTX

Q.33	 In Neurospora crassa, a mutation in the poky gene results in a slow growth phenotype (poky). The results of four crosses are given below. (1) wild-type ♀ × wild-type ♂ → All progeny are wild-type (2) wild-type ♀ × poky ♂ → All progeny are wild-type (3) poky ♀ × wild-type ♂ → All progeny are poky (4) poky ♀ × poky ♂ → All progeny are poky Which one of the following explains the inheritance mode of poky? 		
(A)	Episomal inheritance		
(B)	Mendelian inheritance		
(C)	Mitochondrial inheritance		
(D)	X-linked inheritance		

Q.34	Tertiary structure of a protein consisting of α -helices and β -strands can be determined by			
(A)	circular dichroism spectroscopy			
(B)	mass spectrometry			
(C)	nuclear magnetic resonance spectroscopy			
(D)	UV spectroscopy			

Q.35 - Q.38 Multiple Select Question (MSQ), carry TWO mark each (no negative marks).

Q.35 Which of the following statement(s) is/are CORRECT about Aga tumefaciens?	
(A)	It contains tumor inducing plasmid
(B)	It causes crown gall disease in dicotyledonous plants
(C)	It is a Gram-positive soil bacterium
(D)	It is used in generating transgenic plants

Q.36	Which of the following antimicrobial agent(s) is/are growth factor analog(s)?				
(A)	5-Fluorouracil				
(B)	Isoniazid				
(C)	Sulfanilamide				
(D)	Tetracycline				

(A) γ	y-amino butyric acid
(B) I	Indole acetic acid
(C) N	Melatonin
(D) S	Serotonin

Q.38	Which of the following nucleus/nuclei is/are NMR active?
(A)	¹ H
(B)	¹³ C
(C)	¹⁶ O
(D)	³² S

Q.39 - Q.55 Numerical Answer Type (NAT), carry TWO mark each (no negative marks).

Q.39 In a Mendel's dihybrid experiment, a homozygous pea plant with round yellow seeds was crossed with a homozygous plant with wrinkled green seeds. F₁ intercross produced 560 F₂ progeny. The number of F₂ progeny having both dominant traits (round and yellow) is _____.

Q.40	A $0.1 mL$ aliquot of a bacteriophage stock having a concentration of
	4×10^9 phages mL^{-1} is added to 0.5 mL of E. coli culture having a
	concentration of 2×10^8 cells mL ⁻¹ . The multiplicity of infection is

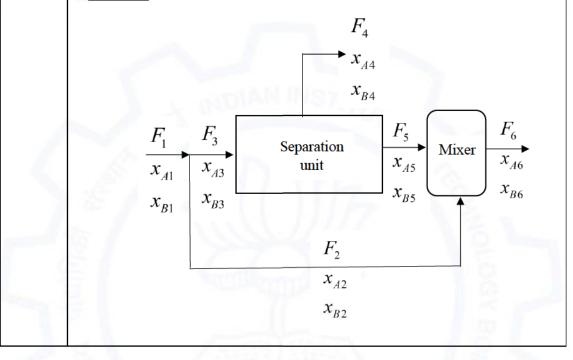
Q.41	If the area of a triangle with the vertices $(k, 0)$, $(2,0)$ and $(0,-2)$ is
1	2 square units, the value of k is

Q.42 In a chemostat with a dilution rate of 0.8 h^{-1} , the steady state biomass concentration and the specific product formation rate are 8 mol m^{-3} and 0.2 (mol product)(mol biomass)⁻¹ h^{-1} , respectively. The steady state product concentration in mol m^{-3} is _____.

Q.43	If the values of two random variables (X, Y) are $(121, 360)$, $(242, 364)$			
	and (363, 362), the value of correlation coefficient between X and Y			
	(rounded off to one decimal place) is			

Q.44		(1	1	1	1)	
	The determinant of matrix $A =$	-1	1	1	1	is .
	The determinant of matrix A –	-1	-1	1	1	
		(1	1	1	3)	

Q.45 It is desired to scale-up a fermentation from 1L to 1000L vessel by maintaining a constant power-to-volume ratio. The small fermenter is operated at an agitator speed of 300 rotations per minute (*rpm*). If the value of scale up factor is 10, agitator speed in *rpm* (rounded off to the nearest integer) for the large fermenter is _____.


Q.46	The specific growth rate of a mold during exponential phase of its growth in
	a batch cultivation is 0.15 h^{-1} . If the cell concentration at 30 h is $33 g L^{-1}$,
	the cell concentration in gL^{-1} (rounded off to the nearest integer) at $24h$ is

Q.47	A sedimentation tank of height 100 cm is used in a conventional activated
	sludge process to separate a suspension of spherical shaped granular sludge
	biomass of $0.5 mm$ diameter. The viscosity of the liquid is $1 cP$. The
	difference in density between the suspended biomass and the liquid is
1000	$0.1 g cm^{-3}$. If the biomass reach their terminal velocity instantaneously, the
	biomass settling time in <i>min</i> (rounded off to two decimal places) is .

Q.48	In a random mating population, Y and y are dominant and recessive
	alleles, respectively. If the frequency of Y allele in both sperm and egg is
	0.70, then the frequency of Y/y heterozygotes (rounded off to two decimal
	places) is

Q.49	Calculate the following integral				
	$\int_{0}^{\pi^{2}/4} \sin \sqrt{x} dx = \underline{\qquad}.$				

Q.50 A feed stream (F_1) containing components A and B is processed in a system comprising of separation unit and a mixer as shown below in the schematic diagram. The mole fractions of the components A and B are x_A and x_B , respectively. If $F_1 + F_2 = 100 \text{ kg } h^{-1}$, the degrees of freedom of the system is _____.

Q.51 A batch cultivation of *E. coli* follows zeroth order Monod's growth kinetics. The cell growth is terminated when the residual dissolved oxygen concentration attains 10% of its saturation value and oxygen mass transfer coefficient $(k_L a)$ reaches its maximum value $(80 h^{-1})$. The saturation value of dissolved oxygen concentration is $0.007 \ kg \ m^{-3}$. If the maximum specific growth rate and yield coefficient (Y_{X/O_2}) are $0.2 \ h^{-1}$ and $1.5 \ (kg \ cells) \ (kg \ O_2)^{-1}$, respectively, then the final cell concentration in $kg \ m^{-3}$ (rounded off to two decimal places) at the end of the batch cultivation is _____.

Q.52 Milk flowing through a stainless steel inner tube (40 mm inner diameter) of double tube-type heater is to be heated from 10 ${}^{0}C$ to 85 ${}^{0}C$ by saturated steam condensing at 120 ${}^{0}C$ on the outer surface of the inner tube. Total heat transferred (Q) is 146200 kcal h^{-1} and the overall heat transfer coefficient is 750 kcal $h^{-1} m^{-2} {}^{\circ}C^{-1}$. The total length of the heating tube in m (rounded off to one decimal place) is _____.

Q.53	A DNA solution of $50 \mu g m L^{-1}$ concentration gives an absorbance of 1.0 at
	$260 nm$. An aliquot of $20 \mu L$ from a $50 \mu L$ purified plasmid solution is
	diluted with distilled water to a total volume of $1000\mu L$. The diluted plasmid
	solution gives an absorbance of 0.550 at 260nm. The concentration of the
	purified plasmid in $\mu g \ \mu L^{-1}$ (rounded off to two decimal places) is

Q.54	The possible number of <i>Sal</i> I restriction sites in a 9 kb double-stranded DNA, with all four bases occurring in equal proportion (rounded off to the nearest integer)
	is

Q.55	A bacterium produces acetic acid from ethanol as per the following reaction
	$2CH_3CH_2OH + 2O_2 \rightarrow 2CH_3COOH + 2H_2O$
	The thermodynamic maximum yield of acetic acid from ethanol in $g g^{-1}$
	(rounded off to two decimal places) is

END OF THE QUESTION PAPER

Graduate Aptitude Test in Engineering (GATE 2021)

Answer Keys and Marks for Subject/Paper: Biotechnology (BT)

Q. No.	Session	Question Type MCQ/MSQ/NAT	Section Name	Answer Key/Range	Marks	Negative Marks
1	5	MCQ	GA	С	1	1/3
2	5	MCQ	GA	Α	1	1/3
3	5	MCQ	GA	с	1	1/3
4	5	MCQ	GA	STA	1	1/3
5	5	MCQ	GA	С	1	1/3
6	5	MCQ	GA	с	2	2/3
7	5	MCQ	GA	с	2	2/3
8	5	МСQ	GA	с	2	2/3
9	5	MCQ	GA	C OR D	2	2/3
10	5	MCQ	GA	D	2	2/3
1	5	MCQ	ВТ	D	1	1/3
2	5	MCQ	BT	А	1	1/3
3	5	MCQ	BT	в	1	1/3
4	5	MCQ	BT	Α	1	1/3
5	5	MCQ	BT	D	1	1/3
6	5	MCQ	BT	В	1	1/3
7	5	MCQ	BT	С	1	1/3
8	5	MCQ	BT	В	1	1/3
9	5	MCQ	BT	Α	1	1/3
10	5	MCQ	ВТ	D	1	1/3

Q. No.	Session	Question Type MCQ/MSQ/NAT	Section Name	Answer Key/Range	Marks	Negative Marks
11	5	MCQ	BT	В	1	1/3
12	5	MCQ	BT	В	1	1/3
13	5	MCQ	вт	А	1	1/3
14	5	MCQ	ВТ	А	1	1/3
15	5	MCQ	вт	С	1	1/3
16	5	MCQ	BT	STD	1	1/3
17	5	MCQ	ВТ	В	1	1/3
18	5	MSQ	вт	А; В; С	1	0
19	5	MSQ	ВТ	А; В	1	0
20	5	NAT	вт	1.5 to 1.5	1	0
21	5	NAT	ВТ	0.16 to 0.18	1	0
22	5	NAT	ВТ	0.10 to 0.13	1	0
23	5	NAT	ВТ	0.25 to 0.25	1	0
24	5	NAT	ВТ	7 to 7	1	0
25	5	NAT	ВТ	1.60 to 1.80	1	0
26	5	MCQ	ВТ	с	2	2/3
27	5	MCQ	BT	В	2	2/3
28	5	MCQ	BT	D	2	2/3
29	5	MCQ	BT	с	2	2/3
30	5	MCQ	BT	D	2	2/3
31	5	MCQ	ВТ	с	2	2/3
32	5	MCQ	вт	D	2	2/3
33	5	MCQ	BT	с	2	2/3

Q. No.	Session	Question Type MCQ/MSQ/NAT	Section Name	Answer Key/Range	Marks	Negative Marks
34	5	MCQ	BT	с	2	2/3
35	5	MSQ	BT	A; B; D	2	0
36	5	MSQ	BT	A; B; C	2	0
37	5	MSQ	BT	B; C; D	2	0
38	5	MSQ	BT	А; В	2	0
39	5	NAT	BT	315 to 315	2	0
40	5	NAT	ВТ	4 to 4	2	0
41	5	NAT	ВТ	0 to 0 OR 4 to 4	2	0
42	5	NAT	BT	2 to 2	2	0
43	5	NAT	BT	0.5 to 0.5	2	0
44	5	NAT	BT	8 to 8	2	0
45	5	NAT	BT	64 to 65	2	0
46	5	NAT	BT	13 to 14	2	0
47	5	NAT	BT	1.20 to 1.30	2	0
48	5	NAT	BT	0.41 to 0.43	2	0
49	5	NAT	BT	2 to 2	2	0
50	5	NAT	BT	6 to 6	2	0
51	5	NAT	BT	3.70 to 3.80	2	0
52	5	NAT	BT	23.0 to 24.0	2	0
53	5	NAT	BT	1.37 to 1.38	2	0
54	5	NAT	BT	2 to 2	2	0
55	5	NAT	BT	1.90 to 2.00	2	0