

Useful data	
	$\{a \in A : a \notin B\}$
\mathbb{C}	Set of all complex numbers
$\mathbb{C}^{m imes n}$	Set of all matrices of order $m \times n$ with complex entries
$\mathbb{C}^{\infty}(\Omega)$	Collection of all infinitely differentiable functions on the open domain Ω
i	$\sqrt{-1}$
Ι	Identity matrix of appropriate order
$L^2(\mathbb{R})$	$:= L^2(\mathbb{R}, dx)$
$L^2[a,b]$	$:= L^2([a,b],dx)$
\mathbb{N}	Set of all positive integers
Q	Set of all rational numbers
\mathbb{R}	Set of all real numbers
$\mathbb{R}^{m imes n}$	Set of all matrices of order $m \times n$ with real entries
\mathbb{S}^1	$\{(x_1, x_2) \in \mathbb{R}^2 : x_1^2 + x_2^2 = 1\}$
\mathbb{S}^2	$\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\}$
Z	Set of all integers

GATE 2022 General Aptitude (GA)

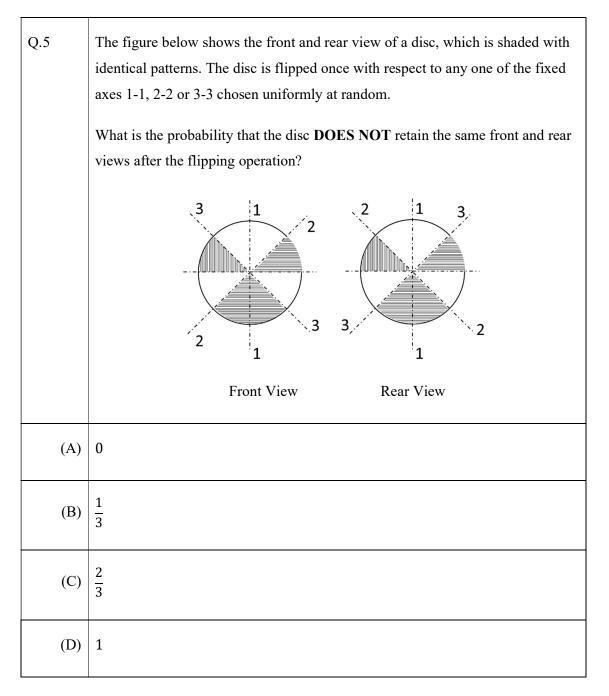
Q.1 – Q.5 Carry ONE mark each.

Q.1	As you grow older, an injury to your may take longer to
(A)	heel / heel
(B)	heal / heel
(C)	heal / heal
(D)	heel / heal

Q.2	In a 500 m race, P and Q have speeds in the ratio of 3 : 4. Q starts the race when P has already covered 140 m. What is the distance between P and Q (in m) when P wins the race?
(A)	20
(B)	40
(C)	60
(D)	140

Q.3	Three bells P, Q, and R are rung periodically in a school. P is rung every 20 minutes; Q is rung every 30 minutes and R is rung every 50 minutes. If all the three bells are rung at 12:00 PM, when will the three bells ring together again the next time?
(A)	5:00 PM
(B)	5:30 PM
(C)	6:00 PM
(D)	6:30 PM

Q.4	Given below are two statements and four conclusions drawn based on the statements.
	Statement 1: Some bottles are cups.
	Statement 2: All cups are knives.
	Conclusion I: Some bottles are knives.
	Conclusion II: Some knives are cups.
	Conclusion III: All cups are bottles.
	Conclusion IV: All knives are cups.
	Which one of the following options can be logically inferred?
(A)	Only conclusion I and conclusion II are correct
(B)	Only conclusion II and conclusion III are correct
(C)	Only conclusion II and conclusion IV are correct
(D)	Only conclusion III and conclusion IV are correct



Q. 6 – Q. 10 Carry TWO marks each.

Q.6	Altruism is the human concern for the wellbeing of others. Altruism has been shown to be motivated more by social bonding, familiarity and identification of belongingness to a group. The notion that altruism may be attributed to empathy or guilt has now been rejected. Which one of the following is the CORRECT logical inference based on the information in the above passage?
(A)	Humans engage in altruism due to guilt but not empathy
(B)	Humans engage in altruism due to empathy but not guilt
(C)	Humans engage in altruism due to group identification but not empathy
(D)	Humans engage in altruism due to empathy but not familiarity

	There are two identical dice with a single letter on each of the faces. The
Q.7	following six letters: Q, R, S, T, U, and V, one on each of the faces. Any of the
	six outcomes are equally likely.
	The two dice are thrown once independently at random.
	What is the probability that the outcomes on the dice were composed only of
	any combination of the following possible outcomes: Q, U and V?
(A)	$\frac{1}{4}$
	4
(B)	3
	$\frac{3}{4}$
(C)	$\frac{1}{6}$
	6
(D)	$\frac{5}{2}$
	36

Q.8	The price of an item is 10% cheaper in an online store S compared to the price at another online store M. Store S charges ₹ 150 for delivery. There are no delivery charges for orders from the store M. A person bought the item from the store S and saved ₹ 100. What is the price of the item at the online store S (in ₹) if there are no other charges than what is described above?
(A)	2500
(B)	2250
(C)	1750
(D)	1500

Q.9	The letters P, Q, R, S, T and U are to be placed one per vertex on a regular convex hexagon, but not necessarily in the same order.
	Consider the following statements:
	 The line segment joining R and S is longer than the line segment joining P and Q. The line segment joining R and S is perpendicular to the line segment
	 joining P and Q. The line segment joining R and U is parallel to the line segment joining T and Q.
	Based on the above statements, which one of the following options is CORRECT?
(A)	The line segment joining R and T is parallel to the line segment joining Q and S
(B)	The line segment joining T and Q is parallel to the line joining P and U
(C)	The line segment joining R and P is perpendicular to the line segment joining U and Q
(D)	The line segment joining Q and S is perpendicular to the line segment joining R and P

Q.10	P
	An ant is at the bottom-left corner of a grid (point P) as shown above. It aims to move to the top-right corner of the grid. The ant moves only along the lines marked in the grid such that the current distance to the top-right corner strictly decreases. Which one of the following is a part of a possible trajectory of the ant during the movement?
(A)	
(B)	P
(C)	P
(D)	Р

Q.11 – Q.35 Carry ONE mark each.

Q.11	Suppose that the characteristic equation of $M \in \mathbb{C}^{3 \times 3}$ is
	$\lambda^3 + \alpha \lambda^2 + \beta \lambda - 1 = 0,$
	where $\alpha, \beta \in \mathbb{C}$ with $\alpha + \beta \neq 0$. Which of the following statements is TRUE?
(A)	$M(I - \beta M) = M^{-1}(M + \alpha I)$
(B)	$M(I + \beta M) = M^{-1}(M - \alpha I)$
(C)	$M^{-1}(M^{-1} + \beta I) = M - \alpha I$
(D)	$M^{-1}(M^{-1} - \beta I) = M + \alpha I$

GATE 2022 Mathematics (MA)

Consider
P : Let $M \in \mathbb{R}^{m \times n}$ with $m > n \ge 2$. If $\operatorname{rank}(M) = n$, then the system of linear equations $Mx = 0$ has $x = 0$ as the only solution.
Q : Let $E \in \mathbb{R}^{n \times n}$, $n \ge 2$ be a non-zero matrix such that $E^3 = 0$. Then $I + E^2$ is a singular matrix.
Which of the following statements is TRUE?
Both \mathbf{P} and \mathbf{Q} are TRUE
Both \mathbf{P} and \mathbf{Q} are FALSE
${\bf P}$ is TRUE and ${\bf Q}$ is FALSE
${\bf P}$ is FALSE and ${\bf Q}$ is TRUE

GATE 2022 Mathematics (MA)

Т

Q.13	Consider the real function of two real variables given by
	$u(x,y) = e^{2x} [\sin 3x \cos 2y \cosh 3y - \cos 3x \sin 2y \sinh 3y].$
	Let $v(x, y)$ be the harmonic conjugate of $u(x, y)$ such that $v(0, 0) = 2$. Let $z = x + iy$ and $f(z) = u(x, y) + iv(x, y)$, then the value of $4 + 2if(i\pi)$ is
(A)	$e^{3\pi} + e^{-3\pi}$
(B)	$e^{3\pi} - e^{-3\pi}$
(C)	$-e^{3\pi} + e^{-3\pi}$
(D)	$-e^{3\pi} - e^{-3\pi}$

Q.14	The value of the integral $\int_C \frac{z^{100}}{z^{101}+1} dz$ where C is the circle of radius 2 centred at the origin taken in the anti-clockwise direction is
(A)	$-2\pi i$
(B)	2π
(C)	0
(D)	$2\pi i$

GATE 2022 Mathematics (MA)

Q.15	Let X be a real normed linear space. Let $X_0 = \{x \in X : x = 1\}$. If X_0 contains two distinct points x and y and the line segment joining them, then, which of the following statements is TRUE?
(A)	x + y = x + y and x, y are linearly independent
(B)	x + y = x + y and x, y are linearly dependent
(C)	$ x+y ^2 = x ^2 + y ^2$ and x, y are linearly independent
(D)	x + y = 2 x y and x, y are linearly dependent

GATE 2022 Mathematics (MA)

Т

Q.16	Let $\{e_k : k \in \mathbb{N}\}$ be an orthonormal basis for a Hilbert space H . Define $f_k = e_k + e_{k+1}, k \in \mathbb{N}$ and $g_j = \sum_{n=1}^{j} (-1)^{n+1} e_n, j \in \mathbb{N}$. Then $\sum_{k=1}^{\infty} \langle g_j, f_k \rangle ^2 =$
(A)	0
(B)	j^2
(C)	$4j^2$
(D)	1

GATE 2022 Mathematics (MA)

Q.17	Consider \mathbb{R}^2 with the usual metric. Let $A = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \leq 1\}$ and $B = \{(x, y) \in \mathbb{R}^2 : (x-2)^2 + y^2 \leq 1\}$. Let $M = A \cup B$ and $N = \text{interior}(A) \cup \text{interior}(B)$. Then, which of the following statements is TRUE?
(A)	M and N are connected
(B)	Neither M nor N is connected
(C)	M is connected and N is not connected
(D)	M is not connected and N is connected

GATE 2022 Mathematics (MA)

Q.18	The real sequence generated by the iterative scheme $x_n = \frac{x_{n-1}}{2} + \frac{1}{x_{n-1}}, \ n \ge 1$
(A)	converges to $\sqrt{2}$, for all $x_0 \in \mathbb{R} \setminus \{0\}$
(B)	converges to $\sqrt{2}$, whenever $x_0 > \sqrt{\frac{2}{3}}$
(C)	converges to $\sqrt{2}$, whenever $x_0 \in (-1, 1) \setminus \{0\}$
(D)	diverges for any $x_0 \neq 0$

Organised by Indian Institute of Technology Kharagpur

GATE 2022 Mathematics (MA)

Q.19	The initial value problem $\frac{dy}{dx} = \cos{(xy)}, \ x \in \mathbb{R}, \ y(0) = y_0,$
	where y_0 is a real constant, has
(A)	a unique solution
(B)	exactly two solutions
(C)	infinitely many solutions
(D)	no solution

GATE 2022 Mathematics (MA)

Q.20	If eigenfunctions corresponding to distinct eigenvalues λ of the Sturm-Liouville problem
	$\frac{d^2y}{dx^2} - 3\frac{dy}{dx} = \lambda y, \ 0 < x < \pi,$ $y(0) = y(\pi) = 0$
	are orthogonal with respect to the weight function $w(x)$, then $w(x)$ is
(A)	e^{-3x}
(B)	e^{-2x}
(C)	e^{2x}
(D)	e^{3x}

GATE 2022 Mathematics (MA)

Q.21	The steady state solution for the heat equation $\frac{\partial u}{\partial t} - \frac{\partial^2 u}{\partial x^2} = 0, \ 0 < x < 2, \ t > 0,$ with the initial condition $u(x,0) = 0, \ 0 < x < 2$ and the boundary conditions $u(0,t) = 1$ and $u(2,t) = 3, \ t > 0$, at $x = 1$ is
(A)	1
(B)	2
(C)	3
(D)	4

Q.22	Consider $([0, 1], T_1)$, where T_1 is the subspace topology induced by the Euclidean topology on \mathbb{R} , and let T_2 be <i>any</i> topology on $[0, 1]$. Consider the following statements:
	P : If T_1 is a proper subset of T_2 , then $([0, 1], T_2)$ is not compact.
	Q : If T_2 is a proper subset of T_1 , then $([0, 1], T_2)$ is not Hausdorff.
	Then
(A)	${\bf P}$ is TRUE and ${\bf Q}$ is FALSE
(B)	Both \mathbf{P} and \mathbf{Q} are TRUE
(C)	Both \mathbf{P} and \mathbf{Q} are FALSE
(D)	${\bf P}$ is FALSE and ${\bf Q}$ is TRUE

GATE 2022 Mathematics (MA)

Q.23	Let $p: ([0,1], T_1) \to (\{0,1\}, T_2)$ be the quotient map, arising from the characteristic function on $[\frac{1}{2}, 1]$, where T_1 is the subspace topology induced by the Euclidean topology on \mathbb{R} . Which of the following statements is TRUE?
(A)	p is an open map but not a closed map
(B)	p is a closed map but not an open map
(C)	p is a closed map as well as an open map
(D)	p is neither an open map nor a closed map

Q.24	Set $X_n := \mathbb{R}$ for each $n \in \mathbb{N}$. Define $Y := \prod_{n \in \mathbb{N}} X_n$. Endow Y with the product topology, where the topology on each X_n is the Euclidean topology. Consider the set $\Delta = \{(x, x, x, \cdots) \mid x \in \mathbb{R}\}$ with the subspace topology induced from Y. Which of the following statements is TRUE?
(A)	Δ is open in Y
(B)	Δ is locally compact
(C)	Δ is dense in Y
(D)	Δ is disconnected

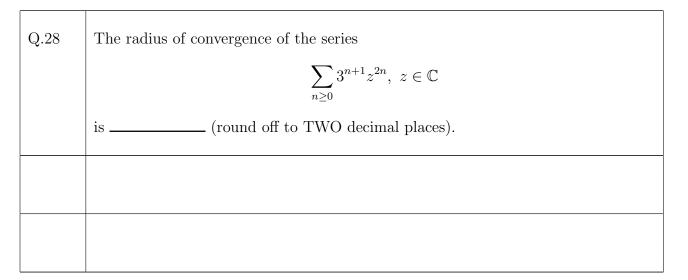
GATE 2022 Mathematics (MA)

Q.25	Consider the linear system of equations $Ax = b$ with
	$A = \begin{pmatrix} 3 & 1 & 1 \\ 1 & 4 & 1 \\ 2 & 0 & 3 \end{pmatrix} \text{and} b = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}.$
	Which of the following statements are TRUE?
(A)	The Jacobi iterative matrix is $\begin{pmatrix} 0 & 1/4 & 1/3 \\ 1/3 & 0 & 1/3 \\ 2/3 & 0 & 0 \end{pmatrix}$
(B)	The Jacobi iterative method converges for any initial vector
(C)	The Gauss-Seidel iterative method converges for any initial vector
(D)	The spectral radius of the Jacobi iterative matrix is less than 1

Q.26	The number of non-isomorphic abelian groups of order $2^2 \cdot 3^3 \cdot 5^4$ is

Q.27	The number of subgroups of a cyclic group of order 12 is

ing Organised by Indian Institute of Technology Kharagpur



Q.29	The number of zeros of the polynomial
	$2z^7 - 7z^5 + 2z^3 - z + 1$
	in the unit disc $\{z \in \mathbb{C} : z < 1\}$ is

Т

Q.30	If $P(x)$ is a polynomial of degree 5 and
	$\alpha = \sum_{i=0}^{6} P(x_i) \left(\prod_{j=0, \ j \neq i}^{6} (x_i - x_j)^{-1} \right),$
	where x_0, x_1, \dots, x_6 are distinct points in the interval [2,3], then the value of $\alpha^2 - \alpha + 1$ is

Q.31	The maximum value of $f(x, y) = 49 - x^2 - y^2$ on the line $x + 3y = 10$ is

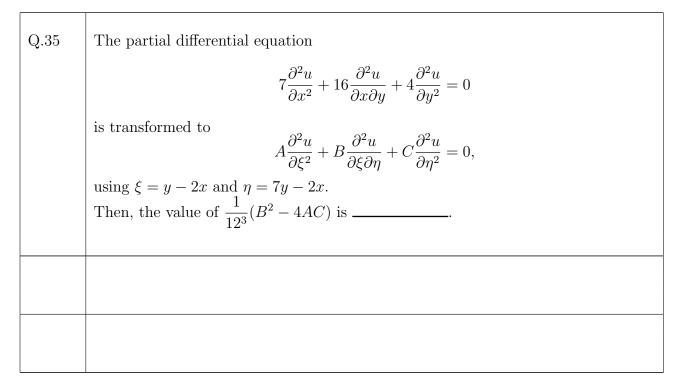
Т

Q.32	If the function $f(x, y) = x^2 + xy + y^2 + \frac{1}{x} + \frac{1}{y}, x \neq 0, y \neq 0$ attains its local minimum value at the point (a, b) , then the value of $a^3 + b^3$ is (round off to TWO decimal places).

Q.33	If the ordinary differential equation
	$x^2 \frac{d^2\phi}{dx^2} + x \frac{d\phi}{dx} + x^2\phi = 0, \ x > 0$
	has a solution of the form $\phi(x) = x^r \sum_{n=0}^{\infty} a_n x^n$, where a_n 's are constants and $a_0 \neq 0$,
	then the value of $r^2 + 1$ is

Т

Q.34	The Bessel functions $J_{\alpha}(x)$, $x > 0$, $\alpha \in \mathbb{R}$ satisfy $J_{\alpha-1}(x) + J_{\alpha+1}(x) = \frac{2\alpha}{x}J_{\alpha}(x)$. Then, the value of $(\pi J_{\frac{3}{2}}(\pi))^2$ is



$\mathbf{Q.36}-\mathbf{Q.65}$ Carry TWO marks each.

Q.36	Let $\mathbb{R}[X]$ denote the ring of polynomials in X with real coefficients. Then, the quotient ring $\mathbb{R}[X]/(X^4 + 4)$ is
(A)	a field
(B)	an integral domain, but not a field
(C)	not an integral domain, but has 0 as the only nilpotent element
(D)	a ring which contains non-zero nilpotent elements

GATE 2022 Mathematics (MA)

Т

Q.37	Consider the following conditions on two proper non-zero ideals J_1 and J_2 of a non-zero commutative ring R .
	P: For any $r_1, r_2 \in R$, there exists a unique $r \in R$ such that $r - r_1 \in J_1$ and $r - r_2 \in J_2$.
	$\mathbf{Q:} \ J_1 + J_2 = R$
	Then, which of the following statements is TRUE?
(A)	${\bf P}$ implies ${\bf Q}$ but ${\bf Q}$ does not imply ${\bf P}$
(B)	${\bf Q}$ implies ${\bf P}$ but ${\bf P}$ does not imply ${\bf Q}$
(C)	${\bf P}$ implies ${\bf Q}$ and ${\bf Q}$ implies ${\bf P}$
(D)	${\bf P}$ does not imply ${\bf Q}$ and ${\bf Q}$ does not imply ${\bf P}$

GATE 2022 Mathematics (MA)

Т

Q.38	Let $f: [-\pi, \pi] \to \mathbb{R}$ be a continuous function such that $f(x) > \frac{f(0)}{2}$, $ x < \delta$ for some δ satisfying $0 < \delta < \pi$. Define $P_{n,\delta}(x) = (1 + \cos x - \cos \delta)^n$, for $n = 1, 2, 3, \cdots$. Then, which of the following statements is TRUE?
(A)	$\lim_{n \to \infty} \int_{0}^{2\delta} f(x) P_{n,\delta}(x) dx = 0$
(B)	$\lim_{n \to \infty} \int_{-2\delta}^{0} f(x) P_{n,\delta}(x) dx = 0$
(C)	$\lim_{n \to \infty} \int_{-\delta}^{\delta} f(x) P_{n,\delta}(x) dx = 0$
(D)	$\lim_{n \to \infty} \int_{[-\pi,\pi] \setminus [-\delta,\delta]} f(x) P_{n,\delta}(x) dx = 0$

GATE 2022 Mathematics (MA)

Q.39	P : Suppose that $\sum_{n=0}^{\infty} a_n x^n$ converges at $x = -3$ and diverges at $x = 6$. Then $\sum_{n=0}^{\infty} (-1)^n a_n$ converges. Q : The interval of convergence of the series $\sum_{n=2}^{\infty} \frac{(-1)^n x^n}{4^n \log_e n}$ is $[-4, 4]$. Which of the following statements is TRUE?
(A)	\mathbf{P} is true and \mathbf{Q} is true
(B)	\mathbf{P} is false and \mathbf{Q} is false
(C)	\mathbf{P} is true and \mathbf{Q} is false
(D)	\mathbf{P} is false and \mathbf{Q} is true

GATE 2022 Mathematics (MA)

Q.40	Let $f_n(x) = \frac{x^2}{x^2 + (1 - nx)^2}, \ x \in [0, 1], \ n = 1, 2, 3, \cdots$ Then, which of the following statements is TRUE?
(A)	$\{f_n\}$ is not equicontinuous on $[0, 1]$
(B)	$\{f_n\}$ is uniformly convergent on $[0, 1]$
(C)	$\{f_n\}$ is equicontinuous on $[0, 1]$
(D)	$\{f_n\}$ is uniformly bounded and has a subsequence converging uniformly on $[0, 1]$

Т

Q.41	Let (\mathbb{Q}, d) be the metric space with $d(x, y) = x - y $. Let $E = \{p \in \mathbb{Q} : 2 < p^2 < 3\}$. Then, the set E is
(A)	closed but not compact
(B)	not closed but compact
(C)	compact
(D)	neither closed nor compact

Q.42	Let $T: L^2[-1,1] \to L^2[-1,1]$ be defined by $Tf = \tilde{f}$, where $\tilde{f}(x) = f(-x)$ almost everywhere. If M is the kernel of $I - T$, then the distance between the function $\phi(t) = e^t$ and M is
(A)	$\frac{1}{2}\sqrt{(e^2 - e^{-2} + 4)}$
(B)	$\frac{1}{2}\sqrt{(e^2 - e^{-2} - 2)}$
(C)	$\frac{1}{2}\sqrt{(e^2-4)}$
(D)	$\frac{1}{2}\sqrt{(e^2 - e^{-2} - 4)}$

GATE 2022 Mathematics (MA)

Q.43	Let X, Y and Z be Banach spaces. Suppose that $T : X \to Y$ is linear and $S : Y \to Z$ is linear, bounded and injective. In addition, if $S \circ T : X \to Z$ is bounded, then, which of the following statements is TRUE?
(A)	T is surjective
(B)	T is bounded but not continuous
(C)	T is bounded
(D)	T is not bounded

GATE 2022 Mathematics (MA)

Q.44	The first derivative of a function $f \in C^{\infty}(-3,3)$ is approximated by an interpolating polynomial of degree 2, using the data
	$(-1,f(-1)),\ (0,f(0))\ \text{and}\ (2,f(2)).$ It is found that $f'(0)\approx -\frac{2}{3}f(-1)+\alpha f(0)+\beta f(2).$ Then, the value of $\frac{1}{\alpha\beta}$ is
(A)	3
(B)	6
(C)	9
(D)	12

Q.45	The work done by the force $F = (x + y)\hat{i} - (x^2 + y^2)\hat{j}$, where \hat{i} and \hat{j} are unit vectors in \overrightarrow{OX} and \overrightarrow{OY} directions, respectively, along the upper half of the circle $x^2 + y^2 = 1$ from $(1,0)$ to $(-1,0)$ in the <i>xy</i> -plane is
(A)	$-\pi$
(B)	$-\frac{\pi}{2}$
(C)	$\frac{\pi}{2}$
(D)	π

GATE 2022 Mathematics (MA)

Let $u(x,t)$ be the solution of the wave equation
$\frac{\partial^2 u}{\partial t^2} - \frac{\partial^2 u}{\partial x^2} = 0, \ 0 < x < \pi, \ t > 0,$
with the initial conditions
$u(x,0) = \sin x + \sin 2x + \sin 3x, \ \frac{\partial u}{\partial t}(x,0) = 0, \ 0 < x < \pi$
and the boundary conditions $u(0,t) = u(\pi,t) = 0, t \ge 0$. Then, the value of $u\left(\frac{\pi}{2},\pi\right)$ is
-1/2
0
1/2
1
· · · · · · · · · · · · · · · · · · ·

Q.47	Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation defined by
	T((1,2)) = (1,0) and $T((2,1)) = (1,1).$
	For $p, q \in \mathbb{R}$, let $T^{-1}((p,q)) = (x, y)$.
	Which of the following statements is TRUE?
(A)	$x = p - q; \ y = 2p - q$
(B)	$x = p + q; \ y = 2p - q$
(C)	$x = p + q; \ y = 2p + q$
(D)	$x = p - q; \ y = 2p + q$

GATE 2022 Mathematics (MA)

Q.48	Let $y = (\alpha, -1)^T$, $\alpha \in \mathbb{R}$ be a feasible solution for the dual problem of the linear programming problem
	Maximize: $5x_1 + 12x_2$
	subject to: $x_1 + 2x_2 + x_3 \le 10$
	$2x_1 - x_2 + 3x_3 = 8$
	$x_1, x_2, x_3 \ge 0.$
	Which of the following statements is TRUE?
(A)	$\alpha < 3$
(B)	$3 \le \alpha < 5.5$
(C)	$5.5 \le \alpha < 7$
(D)	$\alpha \ge 7$

GATE 2022 Mathematics (MA)

Т

Q.49	Let K denote the subset of \mathbb{C} consisting of elements algebraic over \mathbb{Q} . Then, which of the following statements are TRUE?
(A)	No element of $\mathbb{C}\backslash K$ is algebraic over \mathbb{Q}
(B)	K is an algebraically closed field
(C)	For any bijective ring homomorphism $f : \mathbb{C} \longrightarrow \mathbb{C}$, we have $f(K) = K$
(D)	There is no bijection between K and \mathbb{Q}

GATE 2022 Mathematics (MA)

Q.50	Let T be a Möbius transformation such that $T(0) = \alpha$, $T(\alpha) = 0$ and $T(\infty) = -\alpha$, where $\alpha = (-1+i)/\sqrt{2}$. Let L denote the straight line passing through the origin with slope -1 , and let C denote the circle of unit radius centred at the origin. Then, which of the following statements are TRUE?
(A)	T maps L to a straight line
(B)	T maps L to a circle
(C)	T^{-1} maps C to a straight line
(D)	T^{-1} maps C to a circle

GATE 2022 Mathematics (MA)

Q.51	Let $a > 0$. Define $D_a : L^2(\mathbb{R}) \to L^2(\mathbb{R})$ by $(D_a f)(x) = \frac{1}{\sqrt{a}} f\left(\frac{x}{a}\right)$, almost everywhere, for $f \in L^2(\mathbb{R})$. Then, which of the following statements are TRUE?
(A)	D_a is a linear isometry
(B)	D_a is a bijection
(C)	$D_a \circ D_b = D_{a+b}, b > 0$
(D)	D_a is bounded from below

GATE 2022 Mathematics (MA)

Т

Q.52	Let $\{\phi_0, \phi_1, \phi_2, \cdots\}$ be an orthonormal set in $L^2[-1, 1]$ such that $\phi_n = C_n P_n$, where C_n is a constant and P_n is the Legendre polynomial of degree n , for each $n \in \mathbb{N} \cup \{0\}$. Then, which of the following statements are TRUE?
(A)	$\phi_6(1) = 1$
(B)	$\phi_7(-1) = 1$
(C)	$\phi_7(1) = \sqrt{\frac{15}{2}}$
(D)	$\phi_6(-1) = \sqrt{\frac{13}{2}}$

GATE 2022 Mathematics (MA)

Т

Q.53	Let $X = (\mathbb{R}, T)$, where T is the smallest topology on \mathbb{R} in which all the singleton sets are closed. Then, which of the following statements are TRUE?
(A)	[0,1) is compact in X
(B)	X is not first countable
(C)	X is second countable
(D)	X is first countable

GATE 2022 Mathematics (MA)

Q.54	Consider (\mathbb{Z}, T) , where T is the topology generated by sets of the form $A_{m,n} = \{m + nk \mid k \in \mathbb{Z}\},$ for $m, n \in \mathbb{Z}$ and $n \neq 0$. Then, which of the following statements are TRUE?
(A)	(\mathbb{Z}, T) is connected
(B)	Each $A_{m,n}$ is a closed subset of (\mathbb{Z}, T)
(C)	(\mathbb{Z}, T) is Hausdorff
(D)	(\mathbb{Z}, T) is metrizable

GATE 2022 Mathematics (MA)

Q.55	Let $A \in \mathbb{R}^{m \times n}$, $c \in \mathbb{R}^n$ and $b \in \mathbb{R}^m$. Consider the linear programming primal problem
	Minimize: $c^T x$
	subject to: $Ax = b$
	$x \ge 0.$
	Let x^0 and y^0 be feasible solutions of the primal and its dual, respectively. Which of the following statements are TRUE?
(A)	$c^T x^0 \ge b^T y^0$
(B)	$c^T x^0 = b^T y^0$
(C)	If $c^T x^0 = b^T y^0$, then x^0 is optimal for the primal
(D)	If $c^T x^0 = b^T y^0$, then y^0 is optimal for the dual

GATE 2022 Mathematics (MA)

Q.56	Consider \mathbb{R}^3 as a vector space with the usual operations of vector addition and scalar multiplication. Let $x \in \mathbb{R}^3$ be denoted by $x = (x_1, x_2, x_3)$. Define subspaces W_1 and W_2 by $W_1 := \{x \in \mathbb{R}^3 : x_1 + 2x_2 - x_3 = 0\}$ and $W_2 := \{x \in \mathbb{R}^3 : 2x_1 + 3x_3 = 0\}.$ Let dim(U) denote the dimension of the subspace U. Which of the following statements are TRUE?
(A)	$\dim(W_1) = \dim(W_2)$
(B)	$\dim(W_1) + \dim(W_2) - \dim(\mathbb{R}^3) = 1$
(C)	$\dim(W_1 + W_2) = 2$
(D)	$\dim(W_1 \cap W_2) = 1$

Т

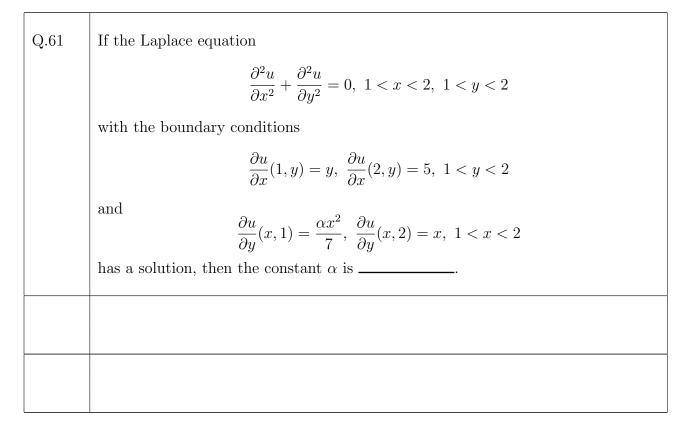
Q.57	Three companies C_1, C_2 and C_3 submit bids for three jobs J_1, J_2 and J_3 . The costs involved per unit are given in the table below:
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Then, the cost of the optimal assignment is

GATE 2022 Mathematics (MA)

Q.58	The initial value problem $\frac{dy}{dx} = f(x, y), y(x_0) = y_0$ is solved by using the following second order Runge-Kutta method:
	$K_{1} = hf(x_{i}, y_{i})$ $K_{2} = hf(x_{i} + \alpha h, y_{i} + \beta K_{1})$ $y_{i+1} = y_{i} + \frac{1}{4} (K_{1} + 3K_{2}), i \ge 0,$
	where h is the uniform step length between the points x_0, x_1, \dots, x_n and $y_i = y(x_i)$. The value of the product $\alpha\beta$ is (round off to TWO decimal places).

Q.59	The surface area of the paraboloid $z = x^2 + y^2$ between the planes $z = 0$ and $z = 1$ is (round off to ONE decimal place).

Q.60	The rate of change of $f(x, y, z) = x + x \cos z - y \sin z + y$ at P_0 in the direction from $P_0(2, -1, 0)$ to $P_1(0, 1, 2)$ is



Q.62	Let $u(x, y)$ be the solution of the first order partial differential equation							
	$x\frac{\partial u}{\partial x} + (x^2 + y)\frac{\partial u}{\partial y} = u$, for all $x, y \in \mathbb{R}$							
	satisfying $u(2, y) = y - 4$, $y \in \mathbb{R}$. Then, the value of $u(1, 2)$ is							

Q.63	The optimal value for the linear programming problem							
	Maximize: $6x_1 + 5x_2$ subject to: $3x_1 + 2x_2 \le 12$ $-x_1 + x_2 \le 1$ $x_1, x_2 \ge 0$							
	is							

Q.64	A certain product is manufactured by plants P_1, P_2 and P_3 whose capacities are 15, 25 and 10 units, respectively. The product is shipped to markets M_1, M_2, M_3 and M_4 , whose requirements are 10, 10, 10 and 20, respectively. The transportation costs per unit are given in the table below.							
			M_1	M_2	M_3	M_4		
		P_1	1	3	1	3	15	
		P_2	2	2	4	1	25	
		P_3	2	1	1	2	10	
			10	10	10	20		
	Then the cost correspond method is	ing t	o the	starti	ng bas	sic sol	lutior	h by the Northwest-corne

Q.65	Let M be a 3×3 real matrix such that $M^2 = 2M + 3I$. If the determinant of M is -9 , then the trace of M equals